Spaces:
Sleeping
Sleeping
| import torch | |
| import gradio as gr | |
| from diffusers import DiffusionPipeline | |
| torch.set_num_threads(torch.get_num_threads()) | |
| torch.set_float32_matmul_precision("high") | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "stablediffusionapi/anything-v5", | |
| torch_dtype=torch.float32 | |
| ) | |
| pipe = pipe.to("cpu") | |
| def generate(prompt, steps, seed): | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| for i, out in enumerate(pipe( | |
| prompt=prompt, | |
| num_inference_steps=steps, | |
| generator=generator, | |
| callback_steps=1, | |
| callback=lambda step, t, latents: None | |
| )): | |
| yield gr.Progress((i + 1) / steps), out.images[0] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## ๐ Anything-V5 CPU Anime Generator") | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| value="Astronaut in a jungle, cold color palette, muted colors, detailed, anime style" | |
| ) | |
| with gr.Row(): | |
| steps = gr.Slider(10, 40, value=25, step=1, label="Steps") | |
| seed = gr.Number(value=42, precision=0, label="Seed") | |
| output = gr.Image(type="pil", label="Result") | |
| btn = gr.Button("Generate") | |
| btn.click( | |
| fn=generate, | |
| inputs=[prompt, steps, seed], | |
| outputs=output | |
| ) | |
| demo.launch() | |