pro-grammer commited on
Commit
d26b540
·
verified ·
1 Parent(s): dbd3c2b

Delete StoryLLM.py

Browse files
Files changed (1) hide show
  1. StoryLLM.py +0 -345
StoryLLM.py DELETED
@@ -1,345 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.optim as optim
4
- import torch.nn.functional as F
5
- import tiktoken
6
- from datasets import load_dataset
7
- import matplotlib.pyplot as plt
8
- import numpy as np
9
- from datetime import datetime
10
- import os
11
-
12
- # Define hyperparameters
13
- vocab_size = 50257
14
- n_heads = 8
15
- n_layers = 6
16
- head_size = 64
17
- n_embd = 512
18
- block_size = 128
19
- dropout = 0.1
20
- learning_rate = 3e-4
21
- weight_decay = 0.1
22
-
23
- # Set Hugging Face cache directories on the external disk
24
- os.environ['HF_HOME'] = '/media/adrian/FamilyBackup/adrian_ai_workspace/hf_cache'
25
- os.environ['HF_DATASETS_CACHE'] = '/media/adrian/FamilyBackup/adrian_ai_workspace/datasets_cache'
26
-
27
- # Load the BookCorpus dataset and ensure it's cached on the external disk
28
- dataset = load_dataset("bookcorpus", cache_dir='/media/adrian/FamilyBackup/adrian_ai_workspace/')
29
-
30
-
31
- # Split the dataset into train and test sets
32
- split_dataset = dataset["train"].train_test_split(test_size=0.1)
33
-
34
- # Select 25% of the training set
35
- train_size = int(0.25 * len(split_dataset["train"])) # 25% of training set
36
- train_dataset = split_dataset["train"].select(range(train_size)) # Take first 25%
37
-
38
- # Use the remaining part of the dataset for testing
39
- test_dataset = split_dataset["test"]
40
-
41
- # Print the size of the train and the test sets
42
- print(f"Train size: {len(train_dataset)}")
43
- print(f"Test size: {len(test_dataset)}")
44
-
45
- # Initialize the tiktoken encoder
46
- enc = tiktoken.get_encoding("gpt2")
47
-
48
- # Define the tokenization function
49
- def tokenize_function(examples):
50
- return {
51
- "input_ids": [enc.encode(text) for text in examples["text"]],
52
- "attention_mask": [[1] * len(enc.encode(text)) for text in examples["text"]]
53
- }
54
-
55
- # Function to pad or truncate sequences
56
- def pad_or_truncate(batch):
57
- max_length = 512 # Adjust as needed
58
- for key in ['input_ids', 'attention_mask']:
59
- batch[key] = [
60
- seq[:max_length] + [0] * (max_length - len(seq)) if len(seq) < max_length else seq[:max_length]
61
- for seq in batch[key]
62
- ]
63
- return batch
64
-
65
- # Tokenize and process the datasets
66
- def process_dataset(dataset, split_name):
67
- # Tokenize
68
- tokenized_dataset = dataset.map(
69
- tokenize_function,
70
- batched=True,
71
- num_proc=10,
72
- remove_columns=dataset.column_names
73
- )
74
-
75
- # Pad or truncate
76
- processed_dataset = tokenized_dataset.map(
77
- pad_or_truncate,
78
- batched=True,
79
- num_proc=10,
80
- )
81
-
82
- # Set format to PyTorch tensors
83
- processed_dataset.set_format(type="torch", columns=["input_ids", "attention_mask"])
84
-
85
- return processed_dataset
86
-
87
- # Process both train and test datasets
88
- train_dataset = process_dataset(train_dataset, "train")
89
- test_dataset = process_dataset(test_dataset, "test")
90
-
91
- # Print some examples
92
- print(f"Example train data: {train_dataset[0]}")
93
- print(f"Example test data: {test_dataset[0]}")
94
-
95
- # Create DataLoaders
96
- train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=8, shuffle=True)
97
- test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=8, shuffle=False)
98
-
99
- # Print an example batch
100
- for batch in train_loader:
101
- print(f"Batch input ids shape: {batch['input_ids'].shape}")
102
- print(f"Batch attention mask shape: {batch['attention_mask'].shape}")
103
- break
104
-
105
- # Print an example batch
106
- for batch in train_loader:
107
- print(f"Batch input ids shape: {batch['input_ids'].shape}")
108
- print(f"Batch attention mask shape: {batch['attention_mask'].shape}")
109
- break
110
-
111
- # Define model
112
- class Head(nn.Module):
113
- """ One head of self-attention """
114
- def __init__(self, head_size, n_embd, block_size, dropout):
115
- super().__init__()
116
- self.key = nn.Linear(n_embd, head_size, bias=False)
117
- self.query = nn.Linear(n_embd, head_size, bias=False)
118
- self.value = nn.Linear(n_embd, head_size, bias=False)
119
- self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
120
-
121
- self.dropout = nn.Dropout(dropout)
122
-
123
- def forward(self, x):
124
- B, T, C = x.shape
125
- k = self.key(x)
126
- q = self.query(x)
127
- v = self.value(x)
128
-
129
- assert C == self.key.in_features, f"Input size {C} doesn't match expected size {self.key.in_features}"
130
-
131
- wei = q @ k.transpose(-2, -1) * k.shape[-1]**-0.5
132
- wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
133
- wei = F.softmax(wei, dim=-1)
134
- wei = self.dropout(wei)
135
-
136
- out = wei @ v
137
- return out
138
-
139
- class MultiHeadAttention(nn.Module):
140
- """ Multiple heads of self-attention in parallel """
141
-
142
- def __init__(self, n_heads, head_size, n_embd, dropout):
143
- super().__init__()
144
- self.heads = nn.ModuleList([Head(head_size, n_embd, block_size, dropout) for _ in range(n_heads)])
145
- self.proj = nn.Linear(n_heads * head_size, n_embd)
146
- self.dropout = nn.Dropout(dropout)
147
-
148
- def forward(self, x):
149
- # Collects the outputs from each head
150
- head_outputs = [head(x) for head in self.heads]
151
- # Concatenate the outputs
152
- concatenated = torch.cat(head_outputs, dim=-1)
153
- # Apply linear transformation and dropout
154
- out = self.proj(concatenated)
155
- out = self.dropout(out)
156
- return out
157
-
158
-
159
- class FeedForward(nn.Module):
160
- """ A simple linear layer followed by non-linearity """
161
-
162
- def __init__(self, n_embd, dropout=0.1, expansion_factor=4):
163
- super().__init__()
164
- self.net = nn.Sequential(
165
- nn.Linear(n_embd, expansion_factor * n_embd),
166
- nn.ReLU(),
167
- nn.Linear(expansion_factor * n_embd, n_embd),
168
- nn.Dropout(dropout),
169
- )
170
-
171
- def forward(self, x):
172
- return self.net(x)
173
-
174
- class Block(nn.Module):
175
- """ Transformer block: communication followed by computation """
176
-
177
- def __init__(self, n_embd, n_head, dropout=0.1):
178
- # n_embed: embedding dimension, n_head: the number of heads we'd like
179
- super().__init__()
180
- head_size = n_embd // n_head
181
- self.sa = MultiHeadAttention(n_head, head_size, n_embd, dropout)
182
- self.ffwd = FeedForward(n_embd, dropout)
183
- self.ln1 = nn.LayerNorm(n_embd)
184
- self.ln2 = nn.LayerNorm(n_embd)
185
-
186
- def forward(self, x):
187
- x = x + self.sa(self.ln1(x))
188
- x = x + self.ffwd(self.ln2(x))
189
- return x
190
-
191
- class GPTLanguageModel(nn.Module):
192
- def __init__(self, vocab_size, n_embd, block_size, n_layer, n_head, device="cpu"):
193
- super().__init__()
194
- self.device = device
195
- self.block_size = block_size
196
- self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
197
- self.position_embedding_table = nn.Embedding(block_size, n_embd)
198
- self.blocks = nn.Sequential(*[Block(n_embd, n_head) for _ in range(n_layer)])
199
- self.ln_f = nn.LayerNorm(n_embd)
200
- self.lm_head = nn.Linear(n_embd, vocab_size)
201
- self.apply(self._init_weights)
202
-
203
- def _init_weights(self, module):
204
- if isinstance(module, nn.Linear):
205
- nn.init.normal_(module.weight, mean=0.0, std=0.02)
206
- if module.bias is not None:
207
- nn.init.zeros_(module.bias)
208
- elif isinstance(module, nn.Embedding):
209
- nn.init.normal_(module.weight, mean=0.1, std=0.02)
210
-
211
- def forward(self, idx, targets=None):
212
- B, T = idx.shape
213
-
214
- # Truncate sequence length to block_size
215
- T = min(T, self.block_size)
216
- idx = idx[:, :T]
217
-
218
- # Get token embeddings for input indices
219
- tok_emb = self.token_embedding_table(idx) # (B, T, C)
220
-
221
- # Get position embeddings (truncate to match input length)
222
- pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device)) # (T, C)
223
-
224
- # Check the shapes for debugging purposes
225
- print(f"tok_emb shape: {tok_emb.shape}") # Should be (B, T, C)
226
- print(f"pos_emb shape: {pos_emb.unsqueeze(0).shape}") # Should be (1, T, C)
227
-
228
- # Combine token and position embeddings
229
- x = tok_emb + pos_emb.unsqueeze(0) # (B, T, C)
230
-
231
- # Apply transformer blocks
232
- x = self.blocks(x) # (B, T, C)
233
-
234
- # Final layer normalization
235
- x = self.ln_f(x) # (B, T, C)
236
-
237
- # Get logits for vocabulary prediction
238
- logits = self.lm_head(x) # (B, T, vocab_size)
239
-
240
- # Optionally calculate loss if targets are provided
241
- loss = None
242
- if targets is not None:
243
- B, T, C = logits.shape
244
- logits = logits.view(B * T, C) # Reshape for cross-entropy loss
245
- targets = targets.view(B * T) # Flatten target tensor
246
- loss = F.cross_entropy(logits, targets)
247
-
248
- return logits, loss
249
-
250
-
251
- @torch.no_grad()
252
- def generate(self, idx, max_new_tokens):
253
- for _ in range(max_new_tokens):
254
- idx_cond = idx[:, -self.block_size:] # Crop to the last block_size tokens
255
- logits, _ = self(idx_cond) # Get Predictions
256
- logits = logits[:, -1, :] # Focus on the last time step
257
- probs = F.softmax(logits, dim=-1) # Get probabilities
258
- idx_next = torch.multinomial(probs, num_samples=1) # Samples from the distribution
259
- idx = torch.cat((idx, idx_next), dim=1) # Append sampled index
260
- return idx
261
-
262
- device = torch.device("cpu")
263
- print (f"Using device: {device}")
264
-
265
-
266
- # Instantiate the model
267
- model = GPTLanguageModel(vocab_size, n_embd, block_size, n_layers, n_heads, device=device)
268
-
269
- # Move the model to the GPU (if available)
270
- model = model.to(device)
271
-
272
- # Define criterion and optimizer
273
- criterion = nn.CrossEntropyLoss()
274
- optimizer = optim.Adam(model.parameters(), lr=learning_rate)
275
-
276
- # Training loop
277
- def batch_gh(model, criterion, optimizer, train_loader, test_loader, epochs):
278
- train_losses = np.zeros(epochs) # Initialize arrays here
279
- test_losses = np.zeros(epochs)
280
-
281
- for it in range(epochs):
282
- model.train() # Set model to training mode
283
- t0 = datetime.now()
284
- train_loss = []
285
- for batch in train_loader:
286
- inputs = batch["input_ids"].to(device)
287
- attention_mask = batch["attention_mask"].to(device)
288
-
289
- # Create targets by shifting inputs by one position
290
- targets = inputs[:, 1:].contiguous()
291
- inputs = inputs[:, :-1].contiguous()
292
-
293
- # Zero parameter gradients
294
- optimizer.zero_grad()
295
-
296
- # Forward pass
297
- outputs, loss = model(inputs, targets)
298
-
299
- # Backward and optimize
300
- loss.backward()
301
- optimizer.step()
302
-
303
- train_loss.append(loss.item())
304
-
305
- # Get average train_loss
306
- train_loss = np.mean(train_loss)
307
-
308
- model.eval() # Set model to evaluation mode
309
- test_loss = []
310
- with torch.no_grad():
311
- for batch in test_loader:
312
- inputs = batch["input_ids"].to(device)
313
- attention_mask = batch["attention_mask"].to(device)
314
-
315
- # Create targets by shifting inputs by one position
316
- targets = inputs[:, 1:].contiguous()
317
- inputs = inputs[:, :-1].contiguous() # Corrected
318
-
319
- outputs, loss = model(inputs, targets)
320
- test_loss.append(loss.item())
321
-
322
- test_loss = np.mean(test_loss)
323
-
324
- # Save losses
325
- train_losses[it] = train_loss
326
- test_losses[it] = test_loss
327
-
328
- dt = datetime.now() - t0
329
- print(f'Epoch {it + 1}/{epochs}, Train Loss: {train_loss:.4f}, \
330
- Test Loss: {test_loss:.4f}, Duration: {dt}')
331
-
332
- return train_losses, test_losses
333
-
334
- train_losses, test_losses = batch_gh(model, criterion, optimizer, train_loader, test_loader, epochs=10)
335
-
336
- # Plot loss
337
- plt.plot(train_losses, label="train_loss")
338
- plt.plot(test_losses, label="test_loss")
339
- plt.legend()
340
- plt.show()
341
-
342
- # Save model weights
343
- model_save_path = "/home/adrian/Documents/StoryCrafterLLM/model_weights.pth"
344
- torch.save(model.state_dict(), model_save_path)
345
- print(f"Model saved to {model_save_path}")