pro-grammer commited on
Commit
dbd3c2b
·
verified ·
1 Parent(s): 280c3c6

Upload StoryLLM.py

Browse files
Files changed (1) hide show
  1. StoryLLM.py +345 -0
StoryLLM.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ import torch.nn.functional as F
5
+ import tiktoken
6
+ from datasets import load_dataset
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ from datetime import datetime
10
+ import os
11
+
12
+ # Define hyperparameters
13
+ vocab_size = 50257
14
+ n_heads = 8
15
+ n_layers = 6
16
+ head_size = 64
17
+ n_embd = 512
18
+ block_size = 128
19
+ dropout = 0.1
20
+ learning_rate = 3e-4
21
+ weight_decay = 0.1
22
+
23
+ # Set Hugging Face cache directories on the external disk
24
+ os.environ['HF_HOME'] = '/media/adrian/FamilyBackup/adrian_ai_workspace/hf_cache'
25
+ os.environ['HF_DATASETS_CACHE'] = '/media/adrian/FamilyBackup/adrian_ai_workspace/datasets_cache'
26
+
27
+ # Load the BookCorpus dataset and ensure it's cached on the external disk
28
+ dataset = load_dataset("bookcorpus", cache_dir='/media/adrian/FamilyBackup/adrian_ai_workspace/')
29
+
30
+
31
+ # Split the dataset into train and test sets
32
+ split_dataset = dataset["train"].train_test_split(test_size=0.1)
33
+
34
+ # Select 25% of the training set
35
+ train_size = int(0.25 * len(split_dataset["train"])) # 25% of training set
36
+ train_dataset = split_dataset["train"].select(range(train_size)) # Take first 25%
37
+
38
+ # Use the remaining part of the dataset for testing
39
+ test_dataset = split_dataset["test"]
40
+
41
+ # Print the size of the train and the test sets
42
+ print(f"Train size: {len(train_dataset)}")
43
+ print(f"Test size: {len(test_dataset)}")
44
+
45
+ # Initialize the tiktoken encoder
46
+ enc = tiktoken.get_encoding("gpt2")
47
+
48
+ # Define the tokenization function
49
+ def tokenize_function(examples):
50
+ return {
51
+ "input_ids": [enc.encode(text) for text in examples["text"]],
52
+ "attention_mask": [[1] * len(enc.encode(text)) for text in examples["text"]]
53
+ }
54
+
55
+ # Function to pad or truncate sequences
56
+ def pad_or_truncate(batch):
57
+ max_length = 512 # Adjust as needed
58
+ for key in ['input_ids', 'attention_mask']:
59
+ batch[key] = [
60
+ seq[:max_length] + [0] * (max_length - len(seq)) if len(seq) < max_length else seq[:max_length]
61
+ for seq in batch[key]
62
+ ]
63
+ return batch
64
+
65
+ # Tokenize and process the datasets
66
+ def process_dataset(dataset, split_name):
67
+ # Tokenize
68
+ tokenized_dataset = dataset.map(
69
+ tokenize_function,
70
+ batched=True,
71
+ num_proc=10,
72
+ remove_columns=dataset.column_names
73
+ )
74
+
75
+ # Pad or truncate
76
+ processed_dataset = tokenized_dataset.map(
77
+ pad_or_truncate,
78
+ batched=True,
79
+ num_proc=10,
80
+ )
81
+
82
+ # Set format to PyTorch tensors
83
+ processed_dataset.set_format(type="torch", columns=["input_ids", "attention_mask"])
84
+
85
+ return processed_dataset
86
+
87
+ # Process both train and test datasets
88
+ train_dataset = process_dataset(train_dataset, "train")
89
+ test_dataset = process_dataset(test_dataset, "test")
90
+
91
+ # Print some examples
92
+ print(f"Example train data: {train_dataset[0]}")
93
+ print(f"Example test data: {test_dataset[0]}")
94
+
95
+ # Create DataLoaders
96
+ train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=8, shuffle=True)
97
+ test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=8, shuffle=False)
98
+
99
+ # Print an example batch
100
+ for batch in train_loader:
101
+ print(f"Batch input ids shape: {batch['input_ids'].shape}")
102
+ print(f"Batch attention mask shape: {batch['attention_mask'].shape}")
103
+ break
104
+
105
+ # Print an example batch
106
+ for batch in train_loader:
107
+ print(f"Batch input ids shape: {batch['input_ids'].shape}")
108
+ print(f"Batch attention mask shape: {batch['attention_mask'].shape}")
109
+ break
110
+
111
+ # Define model
112
+ class Head(nn.Module):
113
+ """ One head of self-attention """
114
+ def __init__(self, head_size, n_embd, block_size, dropout):
115
+ super().__init__()
116
+ self.key = nn.Linear(n_embd, head_size, bias=False)
117
+ self.query = nn.Linear(n_embd, head_size, bias=False)
118
+ self.value = nn.Linear(n_embd, head_size, bias=False)
119
+ self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
120
+
121
+ self.dropout = nn.Dropout(dropout)
122
+
123
+ def forward(self, x):
124
+ B, T, C = x.shape
125
+ k = self.key(x)
126
+ q = self.query(x)
127
+ v = self.value(x)
128
+
129
+ assert C == self.key.in_features, f"Input size {C} doesn't match expected size {self.key.in_features}"
130
+
131
+ wei = q @ k.transpose(-2, -1) * k.shape[-1]**-0.5
132
+ wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
133
+ wei = F.softmax(wei, dim=-1)
134
+ wei = self.dropout(wei)
135
+
136
+ out = wei @ v
137
+ return out
138
+
139
+ class MultiHeadAttention(nn.Module):
140
+ """ Multiple heads of self-attention in parallel """
141
+
142
+ def __init__(self, n_heads, head_size, n_embd, dropout):
143
+ super().__init__()
144
+ self.heads = nn.ModuleList([Head(head_size, n_embd, block_size, dropout) for _ in range(n_heads)])
145
+ self.proj = nn.Linear(n_heads * head_size, n_embd)
146
+ self.dropout = nn.Dropout(dropout)
147
+
148
+ def forward(self, x):
149
+ # Collects the outputs from each head
150
+ head_outputs = [head(x) for head in self.heads]
151
+ # Concatenate the outputs
152
+ concatenated = torch.cat(head_outputs, dim=-1)
153
+ # Apply linear transformation and dropout
154
+ out = self.proj(concatenated)
155
+ out = self.dropout(out)
156
+ return out
157
+
158
+
159
+ class FeedForward(nn.Module):
160
+ """ A simple linear layer followed by non-linearity """
161
+
162
+ def __init__(self, n_embd, dropout=0.1, expansion_factor=4):
163
+ super().__init__()
164
+ self.net = nn.Sequential(
165
+ nn.Linear(n_embd, expansion_factor * n_embd),
166
+ nn.ReLU(),
167
+ nn.Linear(expansion_factor * n_embd, n_embd),
168
+ nn.Dropout(dropout),
169
+ )
170
+
171
+ def forward(self, x):
172
+ return self.net(x)
173
+
174
+ class Block(nn.Module):
175
+ """ Transformer block: communication followed by computation """
176
+
177
+ def __init__(self, n_embd, n_head, dropout=0.1):
178
+ # n_embed: embedding dimension, n_head: the number of heads we'd like
179
+ super().__init__()
180
+ head_size = n_embd // n_head
181
+ self.sa = MultiHeadAttention(n_head, head_size, n_embd, dropout)
182
+ self.ffwd = FeedForward(n_embd, dropout)
183
+ self.ln1 = nn.LayerNorm(n_embd)
184
+ self.ln2 = nn.LayerNorm(n_embd)
185
+
186
+ def forward(self, x):
187
+ x = x + self.sa(self.ln1(x))
188
+ x = x + self.ffwd(self.ln2(x))
189
+ return x
190
+
191
+ class GPTLanguageModel(nn.Module):
192
+ def __init__(self, vocab_size, n_embd, block_size, n_layer, n_head, device="cpu"):
193
+ super().__init__()
194
+ self.device = device
195
+ self.block_size = block_size
196
+ self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
197
+ self.position_embedding_table = nn.Embedding(block_size, n_embd)
198
+ self.blocks = nn.Sequential(*[Block(n_embd, n_head) for _ in range(n_layer)])
199
+ self.ln_f = nn.LayerNorm(n_embd)
200
+ self.lm_head = nn.Linear(n_embd, vocab_size)
201
+ self.apply(self._init_weights)
202
+
203
+ def _init_weights(self, module):
204
+ if isinstance(module, nn.Linear):
205
+ nn.init.normal_(module.weight, mean=0.0, std=0.02)
206
+ if module.bias is not None:
207
+ nn.init.zeros_(module.bias)
208
+ elif isinstance(module, nn.Embedding):
209
+ nn.init.normal_(module.weight, mean=0.1, std=0.02)
210
+
211
+ def forward(self, idx, targets=None):
212
+ B, T = idx.shape
213
+
214
+ # Truncate sequence length to block_size
215
+ T = min(T, self.block_size)
216
+ idx = idx[:, :T]
217
+
218
+ # Get token embeddings for input indices
219
+ tok_emb = self.token_embedding_table(idx) # (B, T, C)
220
+
221
+ # Get position embeddings (truncate to match input length)
222
+ pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device)) # (T, C)
223
+
224
+ # Check the shapes for debugging purposes
225
+ print(f"tok_emb shape: {tok_emb.shape}") # Should be (B, T, C)
226
+ print(f"pos_emb shape: {pos_emb.unsqueeze(0).shape}") # Should be (1, T, C)
227
+
228
+ # Combine token and position embeddings
229
+ x = tok_emb + pos_emb.unsqueeze(0) # (B, T, C)
230
+
231
+ # Apply transformer blocks
232
+ x = self.blocks(x) # (B, T, C)
233
+
234
+ # Final layer normalization
235
+ x = self.ln_f(x) # (B, T, C)
236
+
237
+ # Get logits for vocabulary prediction
238
+ logits = self.lm_head(x) # (B, T, vocab_size)
239
+
240
+ # Optionally calculate loss if targets are provided
241
+ loss = None
242
+ if targets is not None:
243
+ B, T, C = logits.shape
244
+ logits = logits.view(B * T, C) # Reshape for cross-entropy loss
245
+ targets = targets.view(B * T) # Flatten target tensor
246
+ loss = F.cross_entropy(logits, targets)
247
+
248
+ return logits, loss
249
+
250
+
251
+ @torch.no_grad()
252
+ def generate(self, idx, max_new_tokens):
253
+ for _ in range(max_new_tokens):
254
+ idx_cond = idx[:, -self.block_size:] # Crop to the last block_size tokens
255
+ logits, _ = self(idx_cond) # Get Predictions
256
+ logits = logits[:, -1, :] # Focus on the last time step
257
+ probs = F.softmax(logits, dim=-1) # Get probabilities
258
+ idx_next = torch.multinomial(probs, num_samples=1) # Samples from the distribution
259
+ idx = torch.cat((idx, idx_next), dim=1) # Append sampled index
260
+ return idx
261
+
262
+ device = torch.device("cpu")
263
+ print (f"Using device: {device}")
264
+
265
+
266
+ # Instantiate the model
267
+ model = GPTLanguageModel(vocab_size, n_embd, block_size, n_layers, n_heads, device=device)
268
+
269
+ # Move the model to the GPU (if available)
270
+ model = model.to(device)
271
+
272
+ # Define criterion and optimizer
273
+ criterion = nn.CrossEntropyLoss()
274
+ optimizer = optim.Adam(model.parameters(), lr=learning_rate)
275
+
276
+ # Training loop
277
+ def batch_gh(model, criterion, optimizer, train_loader, test_loader, epochs):
278
+ train_losses = np.zeros(epochs) # Initialize arrays here
279
+ test_losses = np.zeros(epochs)
280
+
281
+ for it in range(epochs):
282
+ model.train() # Set model to training mode
283
+ t0 = datetime.now()
284
+ train_loss = []
285
+ for batch in train_loader:
286
+ inputs = batch["input_ids"].to(device)
287
+ attention_mask = batch["attention_mask"].to(device)
288
+
289
+ # Create targets by shifting inputs by one position
290
+ targets = inputs[:, 1:].contiguous()
291
+ inputs = inputs[:, :-1].contiguous()
292
+
293
+ # Zero parameter gradients
294
+ optimizer.zero_grad()
295
+
296
+ # Forward pass
297
+ outputs, loss = model(inputs, targets)
298
+
299
+ # Backward and optimize
300
+ loss.backward()
301
+ optimizer.step()
302
+
303
+ train_loss.append(loss.item())
304
+
305
+ # Get average train_loss
306
+ train_loss = np.mean(train_loss)
307
+
308
+ model.eval() # Set model to evaluation mode
309
+ test_loss = []
310
+ with torch.no_grad():
311
+ for batch in test_loader:
312
+ inputs = batch["input_ids"].to(device)
313
+ attention_mask = batch["attention_mask"].to(device)
314
+
315
+ # Create targets by shifting inputs by one position
316
+ targets = inputs[:, 1:].contiguous()
317
+ inputs = inputs[:, :-1].contiguous() # Corrected
318
+
319
+ outputs, loss = model(inputs, targets)
320
+ test_loss.append(loss.item())
321
+
322
+ test_loss = np.mean(test_loss)
323
+
324
+ # Save losses
325
+ train_losses[it] = train_loss
326
+ test_losses[it] = test_loss
327
+
328
+ dt = datetime.now() - t0
329
+ print(f'Epoch {it + 1}/{epochs}, Train Loss: {train_loss:.4f}, \
330
+ Test Loss: {test_loss:.4f}, Duration: {dt}')
331
+
332
+ return train_losses, test_losses
333
+
334
+ train_losses, test_losses = batch_gh(model, criterion, optimizer, train_loader, test_loader, epochs=10)
335
+
336
+ # Plot loss
337
+ plt.plot(train_losses, label="train_loss")
338
+ plt.plot(test_losses, label="test_loss")
339
+ plt.legend()
340
+ plt.show()
341
+
342
+ # Save model weights
343
+ model_save_path = "/home/adrian/Documents/StoryCrafterLLM/model_weights.pth"
344
+ torch.save(model.state_dict(), model_save_path)
345
+ print(f"Model saved to {model_save_path}")