pro-grammer commited on
Commit
3dea1ed
1 Parent(s): d26b540

Upload StoryLLM.py

Browse files
Files changed (1) hide show
  1. StoryLLM.py +346 -0
StoryLLM.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ import torch.nn.functional as F
5
+ import tiktoken
6
+ from datasets import load_dataset
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ from datetime import datetime
10
+ import os
11
+
12
+ # Define hyperparameters
13
+ vocab_size = 50257
14
+ n_heads = 8
15
+ n_layers = 6
16
+ head_size = 64
17
+ n_embd = 512
18
+ block_size = 128
19
+ dropout = 0.1
20
+ learning_rate = 3e-4
21
+ weight_decay = 0.1
22
+
23
+ # Set Hugging Face cache directories on the external disk
24
+ os.environ['HF_HOME'] = '/media/adrian/FamilyBackup/adrian_ai_workspace/hf_cache'
25
+ os.environ['HF_DATASETS_CACHE'] = '/media/adrian/FamilyBackup/adrian_ai_workspace/datasets_cache'
26
+
27
+ # Load the BookCorpus dataset and ensure it's cached on the external disk
28
+ dataset = load_dataset("bookcorpus", cache_dir='/media/adrian/FamilyBackup/adrian_ai_workspace/')
29
+
30
+ # Keep only 10% of the dataset
31
+ total_samples = len(dataset["train"])
32
+ one_percent_samples = int(total_samples * 0.001)
33
+ dataset_subset = dataset["train"].select(range(one_percent_samples)) # Select only the first 1%
34
+
35
+ # Split the subset into train (90%) and test (10%)
36
+ split_dataset = dataset_subset.train_test_split(test_size=0.1) # 10% for testing
37
+ train_dataset = split_dataset["train"]
38
+ test_dataset = split_dataset["test"]
39
+
40
+ # Print the size of the train and the test sets
41
+ print(f"Train size: {len(train_dataset)}")
42
+ print(f"Test size: {len(test_dataset)}")
43
+
44
+ # Initialize the tiktoken encoder
45
+ enc = tiktoken.get_encoding("gpt2")
46
+
47
+ # Define the tokenization function
48
+ def tokenize_function(examples):
49
+ return {
50
+ "input_ids": [enc.encode(text) for text in examples["text"]],
51
+ "attention_mask": [[1] * len(enc.encode(text)) for text in examples["text"]]
52
+ }
53
+
54
+ # Function to pad or truncate sequences
55
+ def pad_or_truncate(batch):
56
+ max_length = 512
57
+ for key in ['input_ids', 'attention_mask']:
58
+ batch[key] = [
59
+ seq[:max_length] + [0] * (max_length - len(seq)) if len(seq) < max_length else seq[:max_length]
60
+ for seq in batch[key]
61
+ ]
62
+ return batch
63
+
64
+ # Tokenize and process the datasets
65
+ def process_dataset(dataset, split_name):
66
+ # Tokenize
67
+ tokenized_dataset = dataset.map(
68
+ tokenize_function,
69
+ batched=True,
70
+ num_proc=20,
71
+ remove_columns=dataset.column_names
72
+ )
73
+
74
+ # Pad or truncate
75
+ processed_dataset = tokenized_dataset.map(
76
+ pad_or_truncate,
77
+ batched=True,
78
+ num_proc=20,
79
+ )
80
+
81
+ # Set format to PyTorch tensors
82
+ processed_dataset.set_format(type="torch", columns=["input_ids", "attention_mask"])
83
+
84
+ return processed_dataset
85
+
86
+ # Process both train and test datasets
87
+ train_dataset = process_dataset(train_dataset, "train")
88
+ test_dataset = process_dataset(test_dataset, "test")
89
+
90
+ # Print some examples
91
+ print(f"Example train data: {train_dataset[0]}")
92
+ print(f"Example test data: {test_dataset[0]}")
93
+
94
+ # Create DataLoaders
95
+ train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=8, shuffle=True)
96
+ test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=8, shuffle=False)
97
+
98
+ # Print an example batch
99
+ for batch in train_loader:
100
+ print(f"Batch input ids shape: {batch['input_ids'].shape}")
101
+ print(f"Batch attention mask shape: {batch['attention_mask'].shape}")
102
+ break
103
+
104
+ # Print an example batch
105
+ for batch in train_loader:
106
+ print(f"Batch input ids shape: {batch['input_ids'].shape}")
107
+ print(f"Batch attention mask shape: {batch['attention_mask'].shape}")
108
+ break
109
+
110
+ # Define model
111
+ class Head(nn.Module):
112
+ """ One head of self-attention """
113
+ def __init__(self, head_size, n_embd, block_size, dropout):
114
+ super().__init__()
115
+ self.key = nn.Linear(n_embd, head_size, bias=False)
116
+ self.query = nn.Linear(n_embd, head_size, bias=False)
117
+ self.value = nn.Linear(n_embd, head_size, bias=False)
118
+ self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
119
+
120
+ self.dropout = nn.Dropout(dropout)
121
+
122
+ def forward(self, x):
123
+ B, T, C = x.shape
124
+ k = self.key(x)
125
+ q = self.query(x)
126
+ v = self.value(x)
127
+
128
+ assert C == self.key.in_features, f"Input size {C} doesn't match expected size {self.key.in_features}"
129
+
130
+ wei = q @ k.transpose(-2, -1) * k.shape[-1]**-0.5
131
+ wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
132
+ wei = F.softmax(wei, dim=-1)
133
+ wei = self.dropout(wei)
134
+
135
+ out = wei @ v
136
+ return out
137
+
138
+ class MultiHeadAttention(nn.Module):
139
+ """ Multiple heads of self-attention in parallel """
140
+
141
+ def __init__(self, n_heads, head_size, n_embd, dropout):
142
+ super().__init__()
143
+ self.heads = nn.ModuleList([Head(head_size, n_embd, block_size, dropout) for _ in range(n_heads)])
144
+ self.proj = nn.Linear(n_heads * head_size, n_embd)
145
+ self.dropout = nn.Dropout(dropout)
146
+
147
+ def forward(self, x):
148
+ # Collects the outputs from each head
149
+ head_outputs = [head(x) for head in self.heads]
150
+ # Concatenate the outputs
151
+ concatenated = torch.cat(head_outputs, dim=-1)
152
+ # Apply linear transformation and dropout
153
+ out = self.proj(concatenated)
154
+ out = self.dropout(out)
155
+ return out
156
+
157
+
158
+ class FeedForward(nn.Module):
159
+ """ A simple linear layer followed by non-linearity """
160
+
161
+ def __init__(self, n_embd, dropout=0.1, expansion_factor=4):
162
+ super().__init__()
163
+ self.net = nn.Sequential(
164
+ nn.Linear(n_embd, expansion_factor * n_embd),
165
+ nn.ReLU(),
166
+ nn.Linear(expansion_factor * n_embd, n_embd),
167
+ nn.Dropout(dropout),
168
+ )
169
+
170
+ def forward(self, x):
171
+ return self.net(x)
172
+
173
+ class Block(nn.Module):
174
+ """ Transformer block: communication followed by computation """
175
+
176
+ def __init__(self, n_embd, n_head, dropout=0.1):
177
+ # n_embed: embedding dimension, n_head: the number of heads we'd like
178
+ super().__init__()
179
+ head_size = n_embd // n_head
180
+ self.sa = MultiHeadAttention(n_head, head_size, n_embd, dropout)
181
+ self.ffwd = FeedForward(n_embd, dropout)
182
+ self.ln1 = nn.LayerNorm(n_embd)
183
+ self.ln2 = nn.LayerNorm(n_embd)
184
+
185
+ def forward(self, x):
186
+ x = x + self.sa(self.ln1(x))
187
+ x = x + self.ffwd(self.ln2(x))
188
+ return x
189
+
190
+ class GPTLanguageModel(nn.Module):
191
+ def __init__(self, vocab_size, n_embd, block_size, n_layer, n_head, device="cpu"):
192
+ super().__init__()
193
+ self.device = device
194
+ self.block_size = block_size
195
+ self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
196
+ self.position_embedding_table = nn.Embedding(block_size, n_embd)
197
+ self.blocks = nn.Sequential(*[Block(n_embd, n_head) for _ in range(n_layer)])
198
+ self.ln_f = nn.LayerNorm(n_embd)
199
+ self.lm_head = nn.Linear(n_embd, vocab_size)
200
+ self.apply(self._init_weights)
201
+
202
+ def _init_weights(self, module):
203
+ if isinstance(module, nn.Linear):
204
+ nn.init.normal_(module.weight, mean=0.0, std=0.02)
205
+ if module.bias is not None:
206
+ nn.init.zeros_(module.bias)
207
+ elif isinstance(module, nn.Embedding):
208
+ nn.init.normal_(module.weight, mean=0.1, std=0.02)
209
+
210
+ def forward(self, idx, targets=None):
211
+ B, T = idx.shape
212
+
213
+ # Truncate sequence length to block_size
214
+ T = min(T, self.block_size)
215
+ idx = idx[:, :T]
216
+
217
+ # Get token embeddings for input indices
218
+ tok_emb = self.token_embedding_table(idx) # (B, T, C)
219
+
220
+ # Get position embeddings (truncate to match input length)
221
+ pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device)) # (T, C)
222
+
223
+ # Combine token and position embeddings
224
+ x = tok_emb + pos_emb.unsqueeze(0) # (B, T, C)
225
+
226
+ # Apply transformer blocks
227
+ x = self.blocks(x) # (B, T, C)
228
+
229
+ # Final layer normalization
230
+ x = self.ln_f(x) # (B, T, C)
231
+
232
+ # Get logits for vocabulary prediction
233
+ logits = self.lm_head(x) # (B, T, vocab_size)
234
+
235
+ # Optionally calculate loss if targets are provided
236
+ loss = None
237
+ if targets is not None:
238
+ # Ensure targets are the same size as logits
239
+ targets = targets[:, :T]
240
+ B, T, C = logits.shape
241
+ logits = logits.reshape(B*T, C)
242
+ targets = targets.reshape(B*T)
243
+ loss = F.cross_entropy(logits, targets)
244
+
245
+ return logits, loss
246
+
247
+ @torch.no_grad()
248
+ def generate(self, idx, max_new_tokens):
249
+ for _ in range(max_new_tokens):
250
+ idx_cond = idx[:, -self.block_size:] # Crop to the last block_size tokens
251
+ logits, _ = self(idx_cond) # Get Predictions
252
+ logits = logits[:, -1, :] # Focus on the last time step
253
+ probs = F.softmax(logits, dim=-1) # Get probabilities
254
+ idx_next = torch.multinomial(probs, num_samples=1) # Samples from the distribution
255
+ idx = torch.cat((idx, idx_next), dim=1) # Append sampled index
256
+ return idx
257
+
258
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
259
+ print (f"Using device: {device}")
260
+
261
+ # Instantiate the model
262
+ model = GPTLanguageModel(vocab_size, n_embd, block_size, n_layers, n_heads, device=device)
263
+
264
+ # Move the model to the GPU (if available)
265
+ model = model.to(device)
266
+
267
+ # Define criterion and optimizer
268
+ criterion = nn.CrossEntropyLoss()
269
+ optimizer = optim.Adam(model.parameters(), lr=learning_rate)
270
+
271
+ # Training loop with progress reporting
272
+ def batch_gh(model, criterion, optimizer, train_loader, test_loader, epochs):
273
+ train_losses = np.zeros(epochs)
274
+ test_losses = np.zeros(epochs)
275
+
276
+ for it in range(epochs):
277
+ model.train() # Set model to training mode
278
+ t0 = datetime.now()
279
+ train_loss = []
280
+
281
+ for i, batch in enumerate(train_loader):
282
+ inputs = batch["input_ids"].to(device)
283
+ attention_mask = batch["attention_mask"].to(device)
284
+
285
+ # Create targets by shifting inputs by one position
286
+ targets = inputs[:, 1:].contiguous()
287
+ inputs = inputs[:, :-1].contiguous()
288
+
289
+ # Zero parameter gradients
290
+ optimizer.zero_grad()
291
+
292
+ # Forward pass
293
+ outputs, loss = model(inputs, targets)
294
+
295
+ # Backward and optimize
296
+ loss.backward()
297
+ optimizer.step()
298
+
299
+ train_loss.append(loss.item())
300
+
301
+ # Print progress every 100 batches
302
+ if (i + 1) % 100 == 0:
303
+ print(f'Epoch {it + 1}/{epochs}, Batch {i + 1}/{len(train_loader)}, Loss: {loss.item():.4f}')
304
+
305
+ # Get average train_loss
306
+ train_loss = np.mean(train_loss)
307
+
308
+ model.eval() # Set model to evaluation mode
309
+ test_loss = []
310
+ with torch.no_grad():
311
+ for batch in test_loader:
312
+ inputs = batch["input_ids"].to(device)
313
+ attention_mask = batch["attention_mask"].to(device)
314
+
315
+ # Create targets by shifting inputs by one position
316
+ targets = inputs[:, 1:].contiguous()
317
+ inputs = inputs[:, :-1].contiguous()
318
+
319
+ outputs, loss = model(inputs, targets)
320
+ test_loss.append(loss.item())
321
+
322
+ test_loss = np.mean(test_loss)
323
+
324
+ # Save losses
325
+ train_losses[it] = train_loss
326
+ test_losses[it] = test_loss
327
+
328
+ dt = datetime.now() - t0
329
+ print(f'Epoch {it + 1}/{epochs}, Train Loss: {train_loss:.4f}, '
330
+ f'Test Loss: {test_loss:.4f}, Duration: {dt}')
331
+
332
+ return train_losses, test_losses
333
+
334
+ # Run the training
335
+ train_losses, test_losses = batch_gh(model, criterion, optimizer, train_loader, test_loader, epochs=2)
336
+
337
+ # Plot loss
338
+ plt.plot(train_losses, label="train_loss")
339
+ plt.plot(test_losses, label="test_loss")
340
+ plt.legend()
341
+ plt.show()
342
+
343
+ # Save model weights
344
+ model_save_path = "/home/adrian/Documents/StoryCrafterLLM/model_weights.pth"
345
+ torch.save(model.state_dict(), model_save_path)
346
+ print(f"Model saved to {model_save_path}")