StoryCrafterLLM / StoryLLM.py
pro-grammer's picture
Upload StoryLLM.py
3dea1ed verified
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import tiktoken
from datasets import load_dataset
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime
import os
# Define hyperparameters
vocab_size = 50257
n_heads = 8
n_layers = 6
head_size = 64
n_embd = 512
block_size = 128
dropout = 0.1
learning_rate = 3e-4
weight_decay = 0.1
# Set Hugging Face cache directories on the external disk
os.environ['HF_HOME'] = '/media/adrian/FamilyBackup/adrian_ai_workspace/hf_cache'
os.environ['HF_DATASETS_CACHE'] = '/media/adrian/FamilyBackup/adrian_ai_workspace/datasets_cache'
# Load the BookCorpus dataset and ensure it's cached on the external disk
dataset = load_dataset("bookcorpus", cache_dir='/media/adrian/FamilyBackup/adrian_ai_workspace/')
# Keep only 10% of the dataset
total_samples = len(dataset["train"])
one_percent_samples = int(total_samples * 0.001)
dataset_subset = dataset["train"].select(range(one_percent_samples)) # Select only the first 1%
# Split the subset into train (90%) and test (10%)
split_dataset = dataset_subset.train_test_split(test_size=0.1) # 10% for testing
train_dataset = split_dataset["train"]
test_dataset = split_dataset["test"]
# Print the size of the train and the test sets
print(f"Train size: {len(train_dataset)}")
print(f"Test size: {len(test_dataset)}")
# Initialize the tiktoken encoder
enc = tiktoken.get_encoding("gpt2")
# Define the tokenization function
def tokenize_function(examples):
return {
"input_ids": [enc.encode(text) for text in examples["text"]],
"attention_mask": [[1] * len(enc.encode(text)) for text in examples["text"]]
}
# Function to pad or truncate sequences
def pad_or_truncate(batch):
max_length = 512
for key in ['input_ids', 'attention_mask']:
batch[key] = [
seq[:max_length] + [0] * (max_length - len(seq)) if len(seq) < max_length else seq[:max_length]
for seq in batch[key]
]
return batch
# Tokenize and process the datasets
def process_dataset(dataset, split_name):
# Tokenize
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
num_proc=20,
remove_columns=dataset.column_names
)
# Pad or truncate
processed_dataset = tokenized_dataset.map(
pad_or_truncate,
batched=True,
num_proc=20,
)
# Set format to PyTorch tensors
processed_dataset.set_format(type="torch", columns=["input_ids", "attention_mask"])
return processed_dataset
# Process both train and test datasets
train_dataset = process_dataset(train_dataset, "train")
test_dataset = process_dataset(test_dataset, "test")
# Print some examples
print(f"Example train data: {train_dataset[0]}")
print(f"Example test data: {test_dataset[0]}")
# Create DataLoaders
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=8, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=8, shuffle=False)
# Print an example batch
for batch in train_loader:
print(f"Batch input ids shape: {batch['input_ids'].shape}")
print(f"Batch attention mask shape: {batch['attention_mask'].shape}")
break
# Print an example batch
for batch in train_loader:
print(f"Batch input ids shape: {batch['input_ids'].shape}")
print(f"Batch attention mask shape: {batch['attention_mask'].shape}")
break
# Define model
class Head(nn.Module):
""" One head of self-attention """
def __init__(self, head_size, n_embd, block_size, dropout):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
v = self.value(x)
assert C == self.key.in_features, f"Input size {C} doesn't match expected size {self.key.in_features}"
wei = q @ k.transpose(-2, -1) * k.shape[-1]**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
""" Multiple heads of self-attention in parallel """
def __init__(self, n_heads, head_size, n_embd, dropout):
super().__init__()
self.heads = nn.ModuleList([Head(head_size, n_embd, block_size, dropout) for _ in range(n_heads)])
self.proj = nn.Linear(n_heads * head_size, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# Collects the outputs from each head
head_outputs = [head(x) for head in self.heads]
# Concatenate the outputs
concatenated = torch.cat(head_outputs, dim=-1)
# Apply linear transformation and dropout
out = self.proj(concatenated)
out = self.dropout(out)
return out
class FeedForward(nn.Module):
""" A simple linear layer followed by non-linearity """
def __init__(self, n_embd, dropout=0.1, expansion_factor=4):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, expansion_factor * n_embd),
nn.ReLU(),
nn.Linear(expansion_factor * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head, dropout=0.1):
# n_embed: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size, n_embd, dropout)
self.ffwd = FeedForward(n_embd, dropout)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class GPTLanguageModel(nn.Module):
def __init__(self, vocab_size, n_embd, block_size, n_layer, n_head, device="cpu"):
super().__init__()
self.device = device
self.block_size = block_size
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd)
self.lm_head = nn.Linear(n_embd, vocab_size)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.1, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
# Truncate sequence length to block_size
T = min(T, self.block_size)
idx = idx[:, :T]
# Get token embeddings for input indices
tok_emb = self.token_embedding_table(idx) # (B, T, C)
# Get position embeddings (truncate to match input length)
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device)) # (T, C)
# Combine token and position embeddings
x = tok_emb + pos_emb.unsqueeze(0) # (B, T, C)
# Apply transformer blocks
x = self.blocks(x) # (B, T, C)
# Final layer normalization
x = self.ln_f(x) # (B, T, C)
# Get logits for vocabulary prediction
logits = self.lm_head(x) # (B, T, vocab_size)
# Optionally calculate loss if targets are provided
loss = None
if targets is not None:
# Ensure targets are the same size as logits
targets = targets[:, :T]
B, T, C = logits.shape
logits = logits.reshape(B*T, C)
targets = targets.reshape(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
@torch.no_grad()
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -self.block_size:] # Crop to the last block_size tokens
logits, _ = self(idx_cond) # Get Predictions
logits = logits[:, -1, :] # Focus on the last time step
probs = F.softmax(logits, dim=-1) # Get probabilities
idx_next = torch.multinomial(probs, num_samples=1) # Samples from the distribution
idx = torch.cat((idx, idx_next), dim=1) # Append sampled index
return idx
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print (f"Using device: {device}")
# Instantiate the model
model = GPTLanguageModel(vocab_size, n_embd, block_size, n_layers, n_heads, device=device)
# Move the model to the GPU (if available)
model = model.to(device)
# Define criterion and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Training loop with progress reporting
def batch_gh(model, criterion, optimizer, train_loader, test_loader, epochs):
train_losses = np.zeros(epochs)
test_losses = np.zeros(epochs)
for it in range(epochs):
model.train() # Set model to training mode
t0 = datetime.now()
train_loss = []
for i, batch in enumerate(train_loader):
inputs = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
# Create targets by shifting inputs by one position
targets = inputs[:, 1:].contiguous()
inputs = inputs[:, :-1].contiguous()
# Zero parameter gradients
optimizer.zero_grad()
# Forward pass
outputs, loss = model(inputs, targets)
# Backward and optimize
loss.backward()
optimizer.step()
train_loss.append(loss.item())
# Print progress every 100 batches
if (i + 1) % 100 == 0:
print(f'Epoch {it + 1}/{epochs}, Batch {i + 1}/{len(train_loader)}, Loss: {loss.item():.4f}')
# Get average train_loss
train_loss = np.mean(train_loss)
model.eval() # Set model to evaluation mode
test_loss = []
with torch.no_grad():
for batch in test_loader:
inputs = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
# Create targets by shifting inputs by one position
targets = inputs[:, 1:].contiguous()
inputs = inputs[:, :-1].contiguous()
outputs, loss = model(inputs, targets)
test_loss.append(loss.item())
test_loss = np.mean(test_loss)
# Save losses
train_losses[it] = train_loss
test_losses[it] = test_loss
dt = datetime.now() - t0
print(f'Epoch {it + 1}/{epochs}, Train Loss: {train_loss:.4f}, '
f'Test Loss: {test_loss:.4f}, Duration: {dt}')
return train_losses, test_losses
# Run the training
train_losses, test_losses = batch_gh(model, criterion, optimizer, train_loader, test_loader, epochs=2)
# Plot loss
plt.plot(train_losses, label="train_loss")
plt.plot(test_losses, label="test_loss")
plt.legend()
plt.show()
# Save model weights
model_save_path = "/home/adrian/Documents/StoryCrafterLLM/model_weights.pth"
torch.save(model.state_dict(), model_save_path)
print(f"Model saved to {model_save_path}")