import streamlit as st | |
from firebase_admin import firestore | |
import pdd1 | |
def app(): | |
if 'db' not in st.session_state: | |
st.session_state.db = '' | |
db=firestore.client() | |
st.session_state.db=db | |
# st.title(' :violet[pdd] :sunglasses:') | |
ph = '' | |
if st.session_state.username=='': | |
st.subheader('Login to use Model') | |
else: | |
pdd1.app() | |
# import streamlit as st | |
#def app(): | |
#st.markdown('<a href="https://prj2106-plantd.hf.space/">Go to Another Link</a>', unsafe_allow_html=True) | |
# import streamlit as st | |
# import tensorflow as tf | |
# from PIL import Image | |
# import numpy as np | |
# import os | |
# import io | |
# import google.generativeai as genai | |
# def app(): | |
# def import_and_predict(image_data, model, class_labels): | |
# size = (256, 256) | |
# if image_data is not None: | |
# image = Image.open(io.BytesIO(image_data.read())) | |
# image = image.resize(size) | |
# image = np.array(image) | |
# img_reshape = image / 255.0 | |
# img_reshape = np.expand_dims(img_reshape, axis=0) | |
# prediction = model.predict(img_reshape) | |
# st.image(image, width=300) | |
# predictions_label = class_labels[np.argmax(prediction[0])] | |
# return predictions_label | |
# else: | |
# st.warning("Please upload an image.") | |
# return None | |
# def get_info_from_gemini(prompt): | |
# genai.configure(api_key=os.environ.get('gemini_api')) | |
# model = genai.GenerativeModel('gemini-pro') | |
# response = model.generate_content(f"{prompt}") | |
# return response | |
# st.title("Plant Disease Detection") | |
# uploaded_image = st.file_uploader(f"Upload an image", type=["jpg", "jpeg", "png"]) | |
# models_path = ['./best_model_100_subset.h5',] | |
# CLASS_LABELS = ['Tomato Early blight', 'Tomato Leaf Mold', 'Tomato YellowLeaf Curl Virus', | |
# 'Tomato mosaic virus', 'Tomato healthy'] | |
# model = tf.keras.models.load_model(models_path[0]) | |
# prediction = import_and_predict(uploaded_image, model, CLASS_LABELS) | |
# st.write("disease name: ", prediction) | |
# if prediction != None: | |
# new_title = '<p style="font-size: 38px">Measures you can take to control: </p>' | |
# st.markdown(new_title, unsafe_allow_html=True) | |
# if prediction == CLASS_LABELS[4]: | |
# st.write("Plant is healthy take good care of it") | |
# response = get_info_from_gemini(f"cure for the disease {prediction} tell in bulletpoints and estimated cost in inr at last give summary of each measures estimated cost") | |
# st.write(response.text) | |