import streamlit as st from firebase_admin import firestore import pdd1 def app(): if 'db' not in st.session_state: st.session_state.db = '' db=firestore.client() st.session_state.db=db # st.title(' :violet[pdd] :sunglasses:') ph = '' if st.session_state.username=='': st.subheader('Login to use Model') else: pdd1.app() # import streamlit as st #def app(): #st.markdown('Go to Another Link', unsafe_allow_html=True) # import streamlit as st # import tensorflow as tf # from PIL import Image # import numpy as np # import os # import io # import google.generativeai as genai # def app(): # def import_and_predict(image_data, model, class_labels): # size = (256, 256) # if image_data is not None: # image = Image.open(io.BytesIO(image_data.read())) # image = image.resize(size) # image = np.array(image) # img_reshape = image / 255.0 # img_reshape = np.expand_dims(img_reshape, axis=0) # prediction = model.predict(img_reshape) # st.image(image, width=300) # predictions_label = class_labels[np.argmax(prediction[0])] # return predictions_label # else: # st.warning("Please upload an image.") # return None # def get_info_from_gemini(prompt): # genai.configure(api_key=os.environ.get('gemini_api')) # model = genai.GenerativeModel('gemini-pro') # response = model.generate_content(f"{prompt}") # return response # st.title("Plant Disease Detection") # uploaded_image = st.file_uploader(f"Upload an image", type=["jpg", "jpeg", "png"]) # models_path = ['./best_model_100_subset.h5',] # CLASS_LABELS = ['Tomato Early blight', 'Tomato Leaf Mold', 'Tomato YellowLeaf Curl Virus', # 'Tomato mosaic virus', 'Tomato healthy'] # model = tf.keras.models.load_model(models_path[0]) # prediction = import_and_predict(uploaded_image, model, CLASS_LABELS) # st.write("disease name: ", prediction) # if prediction != None: # new_title = '
Measures you can take to control:
' # st.markdown(new_title, unsafe_allow_html=True) # if prediction == CLASS_LABELS[4]: # st.write("Plant is healthy take good care of it") # response = get_info_from_gemini(f"cure for the disease {prediction} tell in bulletpoints and estimated cost in inr at last give summary of each measures estimated cost") # st.write(response.text)