priyam314's picture
first commit
cbcb207
from collections import namedtuple
import torch
from torchvision import models
from src.utils import utils
"""
More detail about the VGG architecture (if you want to understand magic/hardcoded numbers) can be found here:
https://github.com/pytorch/vision/blob/3c254fb7af5f8af252c24e89949c54a3461ff0be/torchvision/models/vgg.py
"""
class Vgg16(torch.nn.Module):
"""Only those layers are exposed which have already proven to work nicely."""
def __init__(self, requires_grad=False, show_progress=False):
super().__init__()
vgg_pretrained_features = models.vgg16(pretrained=True,
progress=show_progress).features
self.layer_names = {'relu1_2': 1, 'relu2_2': 2,
'relu3_3': 3, 'relu4_3': 4}
self.content_feature_maps_index = self.layer_names[
utils.yamlGet('contentLayer')]-1 # relu2_2
self.style_feature_maps_indices = list(range(len(
self.layer_names))) # all layers used for style representation
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
x = self.slice1(x)
relu1_2 = x
x = self.slice2(x)
relu2_2 = x
x = self.slice3(x)
relu3_3 = x
x = self.slice4(x)
relu4_3 = x
vgg_outputs = namedtuple("VggOutputs", self.layer_names.keys())
out = vgg_outputs(relu1_2, relu2_2, relu3_3, relu4_3)
return out
class Vgg16Experimental(torch.nn.Module):
"""Everything exposed so you can play with different combinations for style and content representation"""
def __init__(self, requires_grad=False, show_progress=False):
super().__init__()
vgg_pretrained_features = models.vgg16(pretrained=True,
progress=show_progress).features
self.layer_names = [
'relu1_1', 'relu2_1', 'relu2_2', 'relu3_1', 'relu3_2', 'relu4_1',
'relu4_3', 'relu5_1'
]
self.content_feature_maps_index = 4
self.style_feature_maps_indices = list(range(len(
self.layer_names))) # all layers used for style representation
self.conv1_1 = vgg_pretrained_features[0]
self.relu1_1 = vgg_pretrained_features[1]
self.conv1_2 = vgg_pretrained_features[2]
self.relu1_2 = vgg_pretrained_features[3]
self.max_pooling1 = vgg_pretrained_features[4]
self.conv2_1 = vgg_pretrained_features[5]
self.relu2_1 = vgg_pretrained_features[6]
self.conv2_2 = vgg_pretrained_features[7]
self.relu2_2 = vgg_pretrained_features[8]
self.max_pooling2 = vgg_pretrained_features[9]
self.conv3_1 = vgg_pretrained_features[10]
self.relu3_1 = vgg_pretrained_features[11]
self.conv3_2 = vgg_pretrained_features[12]
self.relu3_2 = vgg_pretrained_features[13]
self.conv3_3 = vgg_pretrained_features[14]
self.relu3_3 = vgg_pretrained_features[15]
self.max_pooling3 = vgg_pretrained_features[16]
self.conv4_1 = vgg_pretrained_features[17]
self.relu4_1 = vgg_pretrained_features[18]
self.conv4_2 = vgg_pretrained_features[19]
self.relu4_2 = vgg_pretrained_features[20]
self.conv4_3 = vgg_pretrained_features[21]
self.relu4_3 = vgg_pretrained_features[22]
self.max_pooling4 = vgg_pretrained_features[23]
self.conv5_1 = vgg_pretrained_features[24]
self.relu5_1 = vgg_pretrained_features[25]
self.conv5_2 = vgg_pretrained_features[26]
self.relu5_2 = vgg_pretrained_features[27]
self.conv5_3 = vgg_pretrained_features[28]
self.relu5_3 = vgg_pretrained_features[29]
self.max_pooling5 = vgg_pretrained_features[30]
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
x = self.conv1_1(x)
conv1_1 = x
x = self.relu1_1(x)
relu1_1 = x
x = self.conv1_2(x)
conv1_2 = x
x = self.relu1_2(x)
relu1_2 = x
x = self.max_pooling1(x)
x = self.conv2_1(x)
conv2_1 = x
x = self.relu2_1(x)
relu2_1 = x
x = self.conv2_2(x)
conv2_2 = x
x = self.relu2_2(x)
relu2_2 = x
x = self.max_pooling2(x)
x = self.conv3_1(x)
conv3_1 = x
x = self.relu3_1(x)
relu3_1 = x
x = self.conv3_2(x)
conv3_2 = x
x = self.relu3_2(x)
relu3_2 = x
x = self.conv3_3(x)
conv3_3 = x
x = self.relu3_3(x)
relu3_3 = x
x = self.max_pooling3(x)
x = self.conv4_1(x)
conv4_1 = x
x = self.relu4_1(x)
relu4_1 = x
x = self.conv4_2(x)
conv4_2 = x
x = self.relu4_2(x)
relu4_2 = x
x = self.conv4_3(x)
conv4_3 = x
x = self.relu4_3(x)
relu4_3 = x
x = self.max_pooling4(x)
x = self.conv5_1(x)
conv5_1 = x
x = self.relu5_1(x)
relu5_1 = x
x = self.conv5_2(x)
conv5_2 = x
x = self.relu5_2(x)
relu5_2 = x
x = self.conv5_3(x)
conv5_3 = x
x = self.relu5_3(x)
relu5_3 = x
x = self.max_pooling5(x)
# expose only the layers that you want to experiment with here
vgg_outputs = namedtuple("VggOutputs", self.layer_names)
out = vgg_outputs(relu1_1, relu2_1, relu2_2, relu3_1, relu3_2, relu4_1,
relu4_3, relu5_1)
return out
class Vgg19(torch.nn.Module):
"""
Used in the original NST paper, only those layers are exposed which were used in the original paper
'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1' were used for style representation
'conv4_2' was used for content representation (although they did some experiments with conv2_2 and conv5_2)
"""
def __init__(self,
requires_grad=False,
show_progress=False,
use_relu=True):
super().__init__()
vgg_pretrained_features = models.vgg19(pretrained=True,
progress=show_progress).features
if use_relu: # use relu or as in original paper conv layers
self.layer_names = [
'relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1'
]
self.offset = 1
else:
self.layer_names = [
'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv4_2',
'conv5_1'
]
self.offset = 0
self.content_feature_maps_index = 4 # conv4_2
# all layers used for style representation except conv4_2
self.style_feature_maps_indices = list(range(len(self.layer_names)))
self.style_feature_maps_indices.remove(4) # conv4_2
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.slice6 = torch.nn.Sequential()
for x in range(1 + self.offset):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(1 + self.offset, 6 + self.offset):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(6 + self.offset, 11 + self.offset):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(11 + self.offset, 20 + self.offset):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(20 + self.offset, 22):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
for x in range(22, 29 + +self.offset):
self.slice6.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
x = self.slice1(x)
layer1_1 = x
x = self.slice2(x)
layer2_1 = x
x = self.slice3(x)
layer3_1 = x
x = self.slice4(x)
layer4_1 = x
x = self.slice5(x)
conv4_2 = x
x = self.slice6(x)
layer5_1 = x
vgg_outputs = namedtuple("VggOutputs", self.layer_names)
out = vgg_outputs(layer1_1, layer2_1, layer3_1, layer4_1, conv4_2,
layer5_1)
return out