Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -45,12 +45,12 @@ with open("sdxl_loras.json", "r") as file:
|
|
| 45 |
data = json.load(file)
|
| 46 |
sdxl_loras_raw = [
|
| 47 |
{
|
| 48 |
-
"image": item
|
| 49 |
-
"title": item
|
| 50 |
-
"repo": item
|
| 51 |
-
"trigger_word": item
|
| 52 |
-
"weights": item
|
| 53 |
-
"is_compatible": item
|
| 54 |
"is_pivotal": item.get("is_pivotal", False),
|
| 55 |
"text_embedding_weights": item.get("text_embedding_weights", None),
|
| 56 |
"likes": item.get("likes", 0),
|
|
@@ -70,9 +70,6 @@ device = "cuda"
|
|
| 70 |
state_dicts = {}
|
| 71 |
|
| 72 |
for item in sdxl_loras_raw:
|
| 73 |
-
if not item["weights"]:
|
| 74 |
-
continue
|
| 75 |
-
|
| 76 |
saved_name = hf_hub_download(item["repo"], item["weights"])
|
| 77 |
|
| 78 |
if not saved_name.endswith('.safetensors'):
|
|
@@ -134,8 +131,7 @@ elapsed_time = et - st
|
|
| 134 |
print('Loading VAE took: ', elapsed_time, 'seconds')
|
| 135 |
st = time.time()
|
| 136 |
|
| 137 |
-
|
| 138 |
-
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("frankjoshua/albedobaseXL_v21",
|
| 139 |
vae=vae,
|
| 140 |
controlnet=[identitynet, zoedepthnet],
|
| 141 |
torch_dtype=torch.float16)
|
|
@@ -174,7 +170,7 @@ def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, i
|
|
| 174 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 175 |
new_placeholder = "Type a prompt to use your selected LoRA"
|
| 176 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 177 |
-
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})
|
| 178 |
|
| 179 |
for lora_list in lora_defaults:
|
| 180 |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
|
|
@@ -238,7 +234,7 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 238 |
del weights_sd
|
| 239 |
del lora_model
|
| 240 |
|
| 241 |
-
@spaces.GPU(duration=
|
| 242 |
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st):
|
| 243 |
print(loaded_state_dict)
|
| 244 |
et = time.time()
|
|
@@ -257,37 +253,8 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 257 |
et = time.time()
|
| 258 |
elapsed_time = et - st
|
| 259 |
print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
if loaded_state_dict is not None:
|
| 263 |
-
if last_lora != repo_name:
|
| 264 |
-
if(last_fused):
|
| 265 |
-
st = time.time()
|
| 266 |
-
pipe.unfuse_lora()
|
| 267 |
-
pipe.unload_lora_weights()
|
| 268 |
-
pipe.unload_textual_inversion()
|
| 269 |
-
et = time.time()
|
| 270 |
-
elapsed_time = et - st
|
| 271 |
-
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
|
| 272 |
-
st = time.time()
|
| 273 |
-
pipe.load_lora_weights(loaded_state_dict)
|
| 274 |
-
pipe.fuse_lora(lora_scale)
|
| 275 |
-
et = time.time()
|
| 276 |
-
elapsed_time = et - st
|
| 277 |
-
print('Fuse and load LoRA took: ', elapsed_time, 'seconds')
|
| 278 |
-
last_fused = True
|
| 279 |
-
is_pivotal = sdxl_loras[selected_state_index].get("is_pivotal", False)
|
| 280 |
-
if(is_pivotal):
|
| 281 |
-
#Add the textual inversion embeddings from pivotal tuning models
|
| 282 |
-
text_embedding_name = sdxl_loras[selected_state_index].get("text_embedding_weights")
|
| 283 |
-
if text_embedding_name:
|
| 284 |
-
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
| 285 |
-
state_dict_embedding = load_file(embedding_path)
|
| 286 |
-
pipe.load_textual_inversion(state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 287 |
-
pipe.load_textual_inversion(state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 288 |
-
else:
|
| 289 |
-
# No lora to load, unfuse any existing lora
|
| 290 |
-
if last_fused:
|
| 291 |
st = time.time()
|
| 292 |
pipe.unfuse_lora()
|
| 293 |
pipe.unload_lora_weights()
|
|
@@ -295,7 +262,21 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 295 |
et = time.time()
|
| 296 |
elapsed_time = et - st
|
| 297 |
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
|
| 298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
print("Processing prompt...")
|
| 301 |
st = time.time()
|
|
@@ -320,7 +301,7 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 320 |
image=face_image,
|
| 321 |
strength=1-image_strength,
|
| 322 |
control_image=images,
|
| 323 |
-
num_inference_steps=
|
| 324 |
guidance_scale = guidance_scale,
|
| 325 |
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 326 |
).images[0]
|
|
@@ -374,12 +355,8 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 374 |
full_path_lora = custom_lora_path
|
| 375 |
else:
|
| 376 |
repo_name = sdxl_loras[selected_state_index]["repo"]
|
| 377 |
-
weight_name = sdxl_loras[selected_state_index]
|
| 378 |
-
|
| 379 |
-
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 380 |
-
else:
|
| 381 |
-
# No weights available, use base model without lora
|
| 382 |
-
full_path_lora = None
|
| 383 |
print("Full path LoRA ", full_path_lora)
|
| 384 |
#loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
| 385 |
cross_attention_kwargs = None
|
|
@@ -395,11 +372,11 @@ run_lora.zerogpu = True
|
|
| 395 |
|
| 396 |
def shuffle_gallery(sdxl_loras):
|
| 397 |
random.shuffle(sdxl_loras)
|
| 398 |
-
return [(item
|
| 399 |
|
| 400 |
def classify_gallery(sdxl_loras):
|
| 401 |
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
| 402 |
-
return [(item
|
| 403 |
|
| 404 |
def swap_gallery(order, sdxl_loras):
|
| 405 |
if(order == "random"):
|
|
@@ -447,10 +424,10 @@ def get_civitai_safetensors(link):
|
|
| 447 |
if(x.status_code != 200):
|
| 448 |
raise Exception("Invalid CivitAI URL")
|
| 449 |
model_data = x.json()
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
gr.Warning("The model isn't tagged at CivitAI as a LoRA")
|
| 455 |
raise Exception("The model isn't tagged at CivitAI as a LoRA")
|
| 456 |
model_link_download = None
|
|
@@ -519,12 +496,12 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 519 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 520 |
title = gr.HTML(
|
| 521 |
"""<h1><img src="https://i.imgur.com/DVoGw04.png">
|
| 522 |
-
<span>Face to All<br><small style="
|
| 523 |
font-size: 13px;
|
| 524 |
display: block;
|
| 525 |
font-weight: normal;
|
| 526 |
opacity: 0.75;
|
| 527 |
-
"
|
| 528 |
elem_id="title",
|
| 529 |
)
|
| 530 |
selected_state = gr.State()
|
|
@@ -594,7 +571,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 594 |
fn=update_selection,
|
| 595 |
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
|
| 596 |
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
|
| 597 |
-
show_progress=
|
| 598 |
)
|
| 599 |
#new_gallery.select(
|
| 600 |
# fn=update_selection,
|
|
@@ -606,7 +583,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 606 |
prompt.submit(
|
| 607 |
fn=check_selected,
|
| 608 |
inputs=[selected_state, custom_loaded_lora],
|
| 609 |
-
show_progress=
|
| 610 |
).success(
|
| 611 |
fn=run_lora,
|
| 612 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
|
@@ -615,7 +592,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 615 |
button.click(
|
| 616 |
fn=check_selected,
|
| 617 |
inputs=[selected_state, custom_loaded_lora],
|
| 618 |
-
show_progress=
|
| 619 |
).success(
|
| 620 |
fn=run_lora,
|
| 621 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
|
@@ -625,4 +602,5 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 625 |
demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], js=js)
|
| 626 |
|
| 627 |
demo.queue(default_concurrency_limit=None, api_open=True)
|
| 628 |
-
demo.launch(share=True)
|
|
|
|
|
|
| 45 |
data = json.load(file)
|
| 46 |
sdxl_loras_raw = [
|
| 47 |
{
|
| 48 |
+
"image": item["image"],
|
| 49 |
+
"title": item["title"],
|
| 50 |
+
"repo": item["repo"],
|
| 51 |
+
"trigger_word": item["trigger_word"],
|
| 52 |
+
"weights": item["weights"],
|
| 53 |
+
"is_compatible": item["is_compatible"],
|
| 54 |
"is_pivotal": item.get("is_pivotal", False),
|
| 55 |
"text_embedding_weights": item.get("text_embedding_weights", None),
|
| 56 |
"likes": item.get("likes", 0),
|
|
|
|
| 70 |
state_dicts = {}
|
| 71 |
|
| 72 |
for item in sdxl_loras_raw:
|
|
|
|
|
|
|
|
|
|
| 73 |
saved_name = hf_hub_download(item["repo"], item["weights"])
|
| 74 |
|
| 75 |
if not saved_name.endswith('.safetensors'):
|
|
|
|
| 131 |
print('Loading VAE took: ', elapsed_time, 'seconds')
|
| 132 |
st = time.time()
|
| 133 |
|
| 134 |
+
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
|
|
|
|
| 135 |
vae=vae,
|
| 136 |
controlnet=[identitynet, zoedepthnet],
|
| 137 |
torch_dtype=torch.float16)
|
|
|
|
| 170 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 171 |
new_placeholder = "Type a prompt to use your selected LoRA"
|
| 172 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 173 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }"
|
| 174 |
|
| 175 |
for lora_list in lora_defaults:
|
| 176 |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
|
|
|
|
| 234 |
del weights_sd
|
| 235 |
del lora_model
|
| 236 |
|
| 237 |
+
@spaces.GPU(duration=80)
|
| 238 |
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st):
|
| 239 |
print(loaded_state_dict)
|
| 240 |
et = time.time()
|
|
|
|
| 253 |
et = time.time()
|
| 254 |
elapsed_time = et - st
|
| 255 |
print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
|
| 256 |
+
if last_lora != repo_name:
|
| 257 |
+
if(last_fused):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
st = time.time()
|
| 259 |
pipe.unfuse_lora()
|
| 260 |
pipe.unload_lora_weights()
|
|
|
|
| 262 |
et = time.time()
|
| 263 |
elapsed_time = et - st
|
| 264 |
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
|
| 265 |
+
st = time.time()
|
| 266 |
+
pipe.load_lora_weights(loaded_state_dict)
|
| 267 |
+
pipe.fuse_lora(lora_scale)
|
| 268 |
+
et = time.time()
|
| 269 |
+
elapsed_time = et - st
|
| 270 |
+
print('Fuse and load LoRA took: ', elapsed_time, 'seconds')
|
| 271 |
+
last_fused = True
|
| 272 |
+
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
| 273 |
+
if(is_pivotal):
|
| 274 |
+
#Add the textual inversion embeddings from pivotal tuning models
|
| 275 |
+
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
| 276 |
+
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
| 277 |
+
state_dict_embedding = load_file(embedding_path)
|
| 278 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 279 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 280 |
|
| 281 |
print("Processing prompt...")
|
| 282 |
st = time.time()
|
|
|
|
| 301 |
image=face_image,
|
| 302 |
strength=1-image_strength,
|
| 303 |
control_image=images,
|
| 304 |
+
num_inference_steps=20,
|
| 305 |
guidance_scale = guidance_scale,
|
| 306 |
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 307 |
).images[0]
|
|
|
|
| 355 |
full_path_lora = custom_lora_path
|
| 356 |
else:
|
| 357 |
repo_name = sdxl_loras[selected_state_index]["repo"]
|
| 358 |
+
weight_name = sdxl_loras[selected_state_index]["weights"]
|
| 359 |
+
full_path_lora = state_dicts[repo_name]["saved_name"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
print("Full path LoRA ", full_path_lora)
|
| 361 |
#loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
| 362 |
cross_attention_kwargs = None
|
|
|
|
| 372 |
|
| 373 |
def shuffle_gallery(sdxl_loras):
|
| 374 |
random.shuffle(sdxl_loras)
|
| 375 |
+
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras
|
| 376 |
|
| 377 |
def classify_gallery(sdxl_loras):
|
| 378 |
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
| 379 |
+
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
|
| 380 |
|
| 381 |
def swap_gallery(order, sdxl_loras):
|
| 382 |
if(order == "random"):
|
|
|
|
| 424 |
if(x.status_code != 200):
|
| 425 |
raise Exception("Invalid CivitAI URL")
|
| 426 |
model_data = x.json()
|
| 427 |
+
if(model_data["nsfw"] == True or model_data["nsfwLevel"] > 20):
|
| 428 |
+
gr.Warning("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.")
|
| 429 |
+
raise Exception("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.")
|
| 430 |
+
elif(model_data["type"] != "LORA"):
|
| 431 |
gr.Warning("The model isn't tagged at CivitAI as a LoRA")
|
| 432 |
raise Exception("The model isn't tagged at CivitAI as a LoRA")
|
| 433 |
model_link_download = None
|
|
|
|
| 496 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 497 |
title = gr.HTML(
|
| 498 |
"""<h1><img src="https://i.imgur.com/DVoGw04.png">
|
| 499 |
+
<span>Face to All SDXL<br><small style="
|
| 500 |
font-size: 13px;
|
| 501 |
display: block;
|
| 502 |
font-weight: normal;
|
| 503 |
opacity: 0.75;
|
| 504 |
+
">🧨 diffusers InstantID + ControlNet<br> inspired by fofr's <a href="https://github.com/fofr/cog-face-to-many" target="_blank">face-to-many</a></small></span></h1>""",
|
| 505 |
elem_id="title",
|
| 506 |
)
|
| 507 |
selected_state = gr.State()
|
|
|
|
| 571 |
fn=update_selection,
|
| 572 |
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
|
| 573 |
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
|
| 574 |
+
show_progress=False
|
| 575 |
)
|
| 576 |
#new_gallery.select(
|
| 577 |
# fn=update_selection,
|
|
|
|
| 583 |
prompt.submit(
|
| 584 |
fn=check_selected,
|
| 585 |
inputs=[selected_state, custom_loaded_lora],
|
| 586 |
+
show_progress=False
|
| 587 |
).success(
|
| 588 |
fn=run_lora,
|
| 589 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
|
|
|
| 592 |
button.click(
|
| 593 |
fn=check_selected,
|
| 594 |
inputs=[selected_state, custom_loaded_lora],
|
| 595 |
+
show_progress=False
|
| 596 |
).success(
|
| 597 |
fn=run_lora,
|
| 598 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
|
|
|
| 602 |
demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], js=js)
|
| 603 |
|
| 604 |
demo.queue(default_concurrency_limit=None, api_open=True)
|
| 605 |
+
demo.launch(share=True)
|
| 606 |
+
|