Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -257,8 +257,37 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 257 |
et = time.time()
|
| 258 |
elapsed_time = et - st
|
| 259 |
print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
|
| 260 |
-
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
st = time.time()
|
| 263 |
pipe.unfuse_lora()
|
| 264 |
pipe.unload_lora_weights()
|
|
@@ -266,21 +295,7 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 266 |
et = time.time()
|
| 267 |
elapsed_time = et - st
|
| 268 |
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
|
| 269 |
-
|
| 270 |
-
pipe.load_lora_weights(loaded_state_dict)
|
| 271 |
-
pipe.fuse_lora(lora_scale)
|
| 272 |
-
et = time.time()
|
| 273 |
-
elapsed_time = et - st
|
| 274 |
-
print('Fuse and load LoRA took: ', elapsed_time, 'seconds')
|
| 275 |
-
last_fused = True
|
| 276 |
-
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
| 277 |
-
if(is_pivotal):
|
| 278 |
-
#Add the textual inversion embeddings from pivotal tuning models
|
| 279 |
-
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
| 280 |
-
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
| 281 |
-
state_dict_embedding = load_file(embedding_path)
|
| 282 |
-
pipe.load_textual_inversion(state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 283 |
-
pipe.load_textual_inversion(state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 284 |
|
| 285 |
print("Processing prompt...")
|
| 286 |
st = time.time()
|
|
@@ -359,8 +374,12 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 359 |
full_path_lora = custom_lora_path
|
| 360 |
else:
|
| 361 |
repo_name = sdxl_loras[selected_state_index]["repo"]
|
| 362 |
-
weight_name = sdxl_loras[selected_state_index]
|
| 363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
print("Full path LoRA ", full_path_lora)
|
| 365 |
#loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
| 366 |
cross_attention_kwargs = None
|
|
@@ -376,11 +395,11 @@ run_lora.zerogpu = True
|
|
| 376 |
|
| 377 |
def shuffle_gallery(sdxl_loras):
|
| 378 |
random.shuffle(sdxl_loras)
|
| 379 |
-
return [(item
|
| 380 |
|
| 381 |
def classify_gallery(sdxl_loras):
|
| 382 |
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
| 383 |
-
return [(item
|
| 384 |
|
| 385 |
def swap_gallery(order, sdxl_loras):
|
| 386 |
if(order == "random"):
|
|
@@ -575,7 +594,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 575 |
fn=update_selection,
|
| 576 |
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
|
| 577 |
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
|
| 578 |
-
show_progress=
|
| 579 |
)
|
| 580 |
#new_gallery.select(
|
| 581 |
# fn=update_selection,
|
|
@@ -587,7 +606,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 587 |
prompt.submit(
|
| 588 |
fn=check_selected,
|
| 589 |
inputs=[selected_state, custom_loaded_lora],
|
| 590 |
-
show_progress=
|
| 591 |
).success(
|
| 592 |
fn=run_lora,
|
| 593 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
|
@@ -596,7 +615,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 596 |
button.click(
|
| 597 |
fn=check_selected,
|
| 598 |
inputs=[selected_state, custom_loaded_lora],
|
| 599 |
-
show_progress=
|
| 600 |
).success(
|
| 601 |
fn=run_lora,
|
| 602 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
|
|
|
| 257 |
et = time.time()
|
| 258 |
elapsed_time = et - st
|
| 259 |
print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
|
| 260 |
+
|
| 261 |
+
# Only handle lora if we have weights
|
| 262 |
+
if loaded_state_dict is not None:
|
| 263 |
+
if last_lora != repo_name:
|
| 264 |
+
if(last_fused):
|
| 265 |
+
st = time.time()
|
| 266 |
+
pipe.unfuse_lora()
|
| 267 |
+
pipe.unload_lora_weights()
|
| 268 |
+
pipe.unload_textual_inversion()
|
| 269 |
+
et = time.time()
|
| 270 |
+
elapsed_time = et - st
|
| 271 |
+
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
|
| 272 |
+
st = time.time()
|
| 273 |
+
pipe.load_lora_weights(loaded_state_dict)
|
| 274 |
+
pipe.fuse_lora(lora_scale)
|
| 275 |
+
et = time.time()
|
| 276 |
+
elapsed_time = et - st
|
| 277 |
+
print('Fuse and load LoRA took: ', elapsed_time, 'seconds')
|
| 278 |
+
last_fused = True
|
| 279 |
+
is_pivotal = sdxl_loras[selected_state_index].get("is_pivotal", False)
|
| 280 |
+
if(is_pivotal):
|
| 281 |
+
#Add the textual inversion embeddings from pivotal tuning models
|
| 282 |
+
text_embedding_name = sdxl_loras[selected_state_index].get("text_embedding_weights")
|
| 283 |
+
if text_embedding_name:
|
| 284 |
+
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
| 285 |
+
state_dict_embedding = load_file(embedding_path)
|
| 286 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 287 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 288 |
+
else:
|
| 289 |
+
# No lora to load, unfuse any existing lora
|
| 290 |
+
if last_fused:
|
| 291 |
st = time.time()
|
| 292 |
pipe.unfuse_lora()
|
| 293 |
pipe.unload_lora_weights()
|
|
|
|
| 295 |
et = time.time()
|
| 296 |
elapsed_time = et - st
|
| 297 |
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
|
| 298 |
+
last_fused = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
print("Processing prompt...")
|
| 301 |
st = time.time()
|
|
|
|
| 374 |
full_path_lora = custom_lora_path
|
| 375 |
else:
|
| 376 |
repo_name = sdxl_loras[selected_state_index]["repo"]
|
| 377 |
+
weight_name = sdxl_loras[selected_state_index].get("weights", "")
|
| 378 |
+
if weight_name and repo_name in state_dicts:
|
| 379 |
+
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 380 |
+
else:
|
| 381 |
+
# No weights available, use base model without lora
|
| 382 |
+
full_path_lora = None
|
| 383 |
print("Full path LoRA ", full_path_lora)
|
| 384 |
#loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
| 385 |
cross_attention_kwargs = None
|
|
|
|
| 395 |
|
| 396 |
def shuffle_gallery(sdxl_loras):
|
| 397 |
random.shuffle(sdxl_loras)
|
| 398 |
+
return [(item.get("image") or None, item["title"]) for item in sdxl_loras], sdxl_loras
|
| 399 |
|
| 400 |
def classify_gallery(sdxl_loras):
|
| 401 |
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
| 402 |
+
return [(item.get("image") or None, item["title"]) for item in sorted_gallery], sorted_gallery
|
| 403 |
|
| 404 |
def swap_gallery(order, sdxl_loras):
|
| 405 |
if(order == "random"):
|
|
|
|
| 594 |
fn=update_selection,
|
| 595 |
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
|
| 596 |
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
|
| 597 |
+
show_progress=True
|
| 598 |
)
|
| 599 |
#new_gallery.select(
|
| 600 |
# fn=update_selection,
|
|
|
|
| 606 |
prompt.submit(
|
| 607 |
fn=check_selected,
|
| 608 |
inputs=[selected_state, custom_loaded_lora],
|
| 609 |
+
show_progress=True
|
| 610 |
).success(
|
| 611 |
fn=run_lora,
|
| 612 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
|
|
|
| 615 |
button.click(
|
| 616 |
fn=check_selected,
|
| 617 |
inputs=[selected_state, custom_loaded_lora],
|
| 618 |
+
show_progress=True
|
| 619 |
).success(
|
| 620 |
fn=run_lora,
|
| 621 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|