Spaces:
Runtime error
Runtime error
import torch | |
import torchvision | |
import torch.nn as nn | |
from torchvision import transforms | |
## Add more imports if required | |
#################################################################################################################### | |
# Define your model and transform and all necessary helper functions here # | |
# They will be imported to the exp_recognition.py file # | |
#################################################################################################################### | |
# Definition of classes as dictionary | |
classes = {0: 'ANGER', 1: 'DISGUST', 2: 'FEAR', 3: 'HAPPINESS', 4: 'NEUTRAL', 5: 'SADNESS', 6: 'SURPRISE'} | |
# Example Network | |
class facExpRec(torch.nn.Module): | |
def __init__(self): | |
pass # remove 'pass' once you have written your code | |
#YOUR CODE HERE | |
def forward(self, x): | |
pass # remove 'pass' once you have written your code | |
#YOUR CODE HERE | |
# Sample Helper function | |
def rgb2gray(image): | |
return image.convert('L') | |
# Sample Transformation function | |
#YOUR CODE HERE for changing the Transformation values. | |
trnscm = transforms.Compose([rgb2gray, transforms.Resize((48,48)), transforms.ToTensor()]) |