import torch import torchvision import torch.nn as nn from torchvision import transforms ## Add more imports if required #################################################################################################################### # Define your model and transform and all necessary helper functions here # # They will be imported to the exp_recognition.py file # #################################################################################################################### # Definition of classes as dictionary classes = {0: 'ANGER', 1: 'DISGUST', 2: 'FEAR', 3: 'HAPPINESS', 4: 'NEUTRAL', 5: 'SADNESS', 6: 'SURPRISE'} # Example Network class facExpRec(torch.nn.Module): def __init__(self): pass # remove 'pass' once you have written your code #YOUR CODE HERE def forward(self, x): pass # remove 'pass' once you have written your code #YOUR CODE HERE # Sample Helper function def rgb2gray(image): return image.convert('L') # Sample Transformation function #YOUR CODE HERE for changing the Transformation values. trnscm = transforms.Compose([rgb2gray, transforms.Resize((48,48)), transforms.ToTensor()])