preetam8 commited on
Commit
0c8ad01
·
1 Parent(s): 1588735

Use 3 stage cascade for better results

Browse files
Files changed (1) hide show
  1. app.py +10 -3
app.py CHANGED
@@ -4,14 +4,18 @@ import numpy as np
4
  import torch
5
 
6
  from transformers import VitsModel, VitsTokenizer, pipeline
 
 
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
- target_language = "french"
12
 
13
  # load speech translation checkpoint
14
  asr_pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-small-cv11-french", device=device)
 
 
15
 
16
  # load text-to-speech checkpoint
17
  model = VitsModel.from_pretrained("facebook/mms-tts-fra")
@@ -19,8 +23,11 @@ tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
19
 
20
 
21
  def translate(audio):
22
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": target_language})
23
- return outputs["text"]
 
 
 
24
 
25
 
26
  def synthesise(text):
 
4
  import torch
5
 
6
  from transformers import VitsModel, VitsTokenizer, pipeline
7
+ from transformers import M2M100ForConditionalGeneration
8
+ from tokenization_small100 import SMALL100Tokenizer
9
 
10
 
11
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
 
13
+ target_language = "fr"
14
 
15
  # load speech translation checkpoint
16
  asr_pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-small-cv11-french", device=device)
17
+ translation_model = M2M100ForConditionalGeneration.from_pretrained("alirezamsh/small100", device=device)
18
+ translation_tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100", tgt_lang=target_language)
19
 
20
  # load text-to-speech checkpoint
21
  model = VitsModel.from_pretrained("facebook/mms-tts-fra")
 
23
 
24
 
25
  def translate(audio):
26
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
27
+ eng_text = outputs["text"]
28
+ encoded_eng_text = translation_tokenizer(eng_text, return_tensors="pt")
29
+ generated_tokens = translation_model(**encoded_eng_text)
30
+ return translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
31
 
32
 
33
  def synthesise(text):