cleanup
Browse files
app.py
CHANGED
@@ -1,23 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
import librosa
|
3 |
import logging
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
|
7 |
from transformers import VitsModel, VitsTokenizer, pipeline
|
8 |
-
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
9 |
|
10 |
|
11 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
target_language = "
|
14 |
|
15 |
# load speech translation checkpoint
|
16 |
asr_pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-small-cv11-french", device=device)
|
17 |
-
# whisper_model_name = "openai/whisper-small"
|
18 |
-
# whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
19 |
-
# whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
|
20 |
-
# decoder_ids = whisper_processor.get_decoder_prompt_ids(language=target_language, task="transcribe")
|
21 |
|
22 |
# load text-to-speech checkpoint
|
23 |
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
|
@@ -28,21 +22,6 @@ def translate(audio):
|
|
28 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": target_language})
|
29 |
return outputs["text"]
|
30 |
|
31 |
-
# def translate(audio):
|
32 |
-
# if isinstance(audio, str):
|
33 |
-
# # Account for recorded audio
|
34 |
-
# audio = {
|
35 |
-
# "path": audio,
|
36 |
-
# "sampling_rate": 16_000,
|
37 |
-
# "array": librosa.load(audio, sr=16_000)[0]
|
38 |
-
# }
|
39 |
-
# elif audio["sampling_rate"] != 16_000:
|
40 |
-
# audio["array"] = librosa.resample(audio["array"], audio["sampling_rate"], 16_000)
|
41 |
-
# input_features = whisper_processor(audio["array"], sampling_rate=16000, return_tensors="pt").input_features
|
42 |
-
# predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=decoder_ids)
|
43 |
-
# translated_text = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
44 |
-
# return translated_text
|
45 |
-
|
46 |
|
47 |
def synthesise(text):
|
48 |
inputs = tokenizer(text, return_tensors="pt")
|
@@ -55,7 +34,6 @@ def synthesise(text):
|
|
55 |
|
56 |
def speech_to_speech_translation(audio):
|
57 |
translated_text = translate(audio)
|
58 |
-
logging.info(f"Translated Text: {translated_text}")
|
59 |
synthesised_speech = synthesise(translated_text)
|
60 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
61 |
return 16000, synthesised_speech
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import logging
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
|
6 |
from transformers import VitsModel, VitsTokenizer, pipeline
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
target_language = "french"
|
12 |
|
13 |
# load speech translation checkpoint
|
14 |
asr_pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-small-cv11-french", device=device)
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# load text-to-speech checkpoint
|
17 |
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
|
|
|
22 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": target_language})
|
23 |
return outputs["text"]
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def synthesise(text):
|
27 |
inputs = tokenizer(text, return_tensors="pt")
|
|
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
|
|
37 |
synthesised_speech = synthesise(translated_text)
|
38 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
return 16000, synthesised_speech
|