FirstApp / Temp /FirstPlan.md
RadosΕ‚aw Wolnik
development plan introduced
c3d7064

A newer version of the Gradio SDK is available: 5.35.0

Upgrade

ο»Ώ ──────────────────────────────────────────────────────────────────────────────────────────

────────────────────────────────────────────────────────────────────────────────────────── Step 3: Create the Frontend (Gradio UI)

1 Install Gradio

pip install gradio

2 Create a gradio.py File β€’ This file will contain the Gradio frontend code. β€’ Example:

   import gradio as gr
   from model import serve
  
   def create_gradio_interface():
       with gr.Blocks() as block:
           with gr.Row():
               with gr.Column():
                   chatbot = gr.Chatbot(label="Conversational AI")
                   input_text = gr.Textbox(label="Enter your message...",
   placeholder="Type your message here...")
                   button = gr.Button("Send Message")
  
           input_text.on_input_change(
               chatbot.send_message,
               inputs=[input_text]
           )
           button.on_click(
               chatbot.send_message,
               inputs=[input_text]
           )
  
       return block
  
   if __name__ == "__main__":
       create_gradio_interface().run()
  

3 Run the Gradio Interface β€’ Execute the script to launch the frontend.

────────────────────────────────────────────────────────────────────────────────────────── Step 4: Set Up the Backend (Optional)

1 Install FastAPI

pip install fastapi uvicorn

2 Configure the Backend β€’ Modify the main.py or model.py file to use FastAPI for serving the app. β€’ Example:

   from fastapi import FastAPI
   from fastapi.staticfiles import StaticFiles
  
   app = FastAPI()
  
   app.mount("/static", StaticFiles(directory="static"), name="static")
  
   @app.get("/")
   async def serve():
       return {"message": "Hello World"}
  

3 Run the Backend

uvicorn main:app --reload

────────────────────────────────────────────────────────────────────────────────────────── Step 5: Deploy to Hugging Face Spaces

1 Prepare the App for Deployment β€’ Ensure all dependencies are installed. β€’ Create a requirements.txt file if you haven't already. 2 Upload the App to Hugging Face Spaces β€’ Go to the Hugging Face Spaces dashboard and create a new space. β€’ In the "Code" section, paste your app's code (including main.py, gradio.py, and any other relevant files). β€’ In the "Dependencies" section, add any required packages (e.g., gradio, fastapi,
uvicorn, transformers). β€’ In the "Public URL" section, provide a URL where users can access your app. 3 Configure the Deployment Settings β€’ Set the "Port" to match your backend's port (e.g., 8000 for FastAPI).

uvicorn main:app --reload

────────────────────────────────────────────────────────────────────────────────────────── Step 5: Deploy to Hugging Face Spaces

1 Prepare the App for Deployment β€’ Ensure all dependencies are installed. β€’ Create a requirements.txt file if you haven't already. 2 Upload the App to Hugging Face Spaces β€’ Go to the Hugging Face Spaces dashboard and create a new space. β€’ In the "Code" section, paste your app's code (including main.py, gradio.py, and any other relevant files). β€’ In the "Dependencies" section, add any required packages (e.g., gradio, fastapi,
uvicorn, transformers). β€’ In the "Public URL" section, provide a URL where users can access your app.
3 Configure the Deployment Settings β€’ Set the "Port" to match your backend's port (e.g., 8000 for FastAPI). β€’ Enable "Public URL" so that users can access your app via a web browser. 4 Deploy the Space β€’ Click "Deploy" to publish your app to Hugging Face Spaces.

────────────────────────────────────────────────────────────────────────────────────────── Step 6: Test and Debug

1 Test the App β€’ Use the public URL provided by Hugging Face to access your app. β€’ Test the frontend and backend interactions. 2 Debug Issues β€’ Check the error handling in your backend code. β€’ Use tools like Gradiant or LLM Zero to debug your model. 2 Debug Issues β€’ Check the error handling in your backend code. β€’ Use tools like Gradiant or LLM Zero to debug your model.

──────────────────────────────────────────────────────────────────────────────────────── Step 7: Enhancements (Optional)

1 Add Logging β€’ Use logging or winston to log errors and debug information. 2 Add Monitoring β€’ Use Prometheus and Grafana to monitor your app's performance. 3 Add Advanced Routing β€’ Use route rerouting or conditional rendering based on user input. 4 Add Error Handling β€’ Implement proper error handling in your backend to catch exceptions and return
meaningful responses.

──────────────────────────────────────────────────────────────────────────────────────── Step 8: Deployment Best Practices

1 Use Environment Variables β€’ Store sensitive information (e.g., model weights, API keys) in environment
variables. 2 Optimize Performance β€’ Use model optimization techniques like pruning or quantization. 3 Ensure Security β€’ Configure CORS correctly in your backend code. β€’ Use HTTPS for the frontend to protect sensitive data.