A newer version of the Gradio SDK is available:
5.35.0
ο»Ώ ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Step 3: Create the Frontend (Gradio UI)
1 Install Gradio
pip install gradio
2 Create a gradio.py File β’ This file will contain the Gradio frontend code. β’ Example:
import gradio as gr
from model import serve
def create_gradio_interface():
with gr.Blocks() as block:
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(label="Conversational AI")
input_text = gr.Textbox(label="Enter your message...",
placeholder="Type your message here...")
button = gr.Button("Send Message")
input_text.on_input_change(
chatbot.send_message,
inputs=[input_text]
)
button.on_click(
chatbot.send_message,
inputs=[input_text]
)
return block
if __name__ == "__main__":
create_gradio_interface().run()
3 Run the Gradio Interface β’ Execute the script to launch the frontend.
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Step 4: Set Up the Backend (Optional)
1 Install FastAPI
pip install fastapi uvicorn
2 Configure the Backend β’ Modify the main.py or model.py file to use FastAPI for serving the app. β’ Example:
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
@app.get("/")
async def serve():
return {"message": "Hello World"}
3 Run the Backend
uvicorn main:app --reload
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Step 5: Deploy to Hugging Face Spaces
1 Prepare the App for Deployment
β’ Ensure all dependencies are installed.
β’ Create a requirements.txt file if you haven't already.
2 Upload the App to Hugging Face Spaces
β’ Go to the Hugging Face Spaces dashboard and create a new space.
β’ In the "Code" section, paste your app's code (including main.py, gradio.py, and any
other relevant files).
β’ In the "Dependencies" section, add any required packages (e.g., gradio, fastapi,
uvicorn, transformers).
β’ In the "Public URL" section, provide a URL where users can access your app.
3 Configure the Deployment Settings
β’ Set the "Port" to match your backend's port (e.g., 8000 for FastAPI).
uvicorn main:app --reload
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Step 5: Deploy to Hugging Face Spaces
1 Prepare the App for Deployment
β’ Ensure all dependencies are installed.
β’ Create a requirements.txt file if you haven't already.
2 Upload the App to Hugging Face Spaces
β’ Go to the Hugging Face Spaces dashboard and create a new space.
β’ In the "Code" section, paste your app's code (including main.py, gradio.py, and any
other relevant files).
β’ In the "Dependencies" section, add any required packages (e.g., gradio, fastapi,
uvicorn, transformers).
β’ In the "Public URL" section, provide a URL where users can access your app.
3 Configure the Deployment Settings
β’ Set the "Port" to match your backend's port (e.g., 8000 for FastAPI).
β’ Enable "Public URL" so that users can access your app via a web browser.
4 Deploy the Space
β’ Click "Deploy" to publish your app to Hugging Face Spaces.
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Step 6: Test and Debug
1 Test the App β’ Use the public URL provided by Hugging Face to access your app. β’ Test the frontend and backend interactions. 2 Debug Issues β’ Check the error handling in your backend code. β’ Use tools like Gradiant or LLM Zero to debug your model. 2 Debug Issues β’ Check the error handling in your backend code. β’ Use tools like Gradiant or LLM Zero to debug your model.
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Step 7: Enhancements (Optional)
1 Add Logging
β’ Use logging or winston to log errors and debug information.
2 Add Monitoring
β’ Use Prometheus and Grafana to monitor your app's performance.
3 Add Advanced Routing
β’ Use route rerouting or conditional rendering based on user input.
4 Add Error Handling
β’ Implement proper error handling in your backend to catch exceptions and return
meaningful responses.
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Step 8: Deployment Best Practices
1 Use Environment Variables
β’ Store sensitive information (e.g., model weights, API keys) in environment
variables.
2 Optimize Performance
β’ Use model optimization techniques like pruning or quantization.
3 Ensure Security
β’ Configure CORS correctly in your backend code.
β’ Use HTTPS for the frontend to protect sensitive data.