multimodalart HF staff commited on
Commit
1e787e4
·
verified ·
1 Parent(s): dd6c382

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -26
app.py CHANGED
@@ -7,28 +7,9 @@ from diffusers import FluxPipeline, FluxTransformer2DModel,FlowMatchEulerDiscre
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
 
9
  dtype = torch.bfloat16
10
- device = "cuda"
11
-
12
- bfl_repo = "black-forest-labs/FLUX.1-dev"
13
- scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler", revision="refs/pr/3")
14
- text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
15
- tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
16
- text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype, revision="refs/pr/3")
17
- tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision="refs/pr/3")
18
- vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype, revision="refs/pr/3")
19
- transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype, revision="refs/pr/3")
20
-
21
  device = "cuda" if torch.cuda.is_available() else "cpu"
22
 
23
- pipe = FluxPipeline(
24
- scheduler=scheduler,
25
- text_encoder=text_encoder,
26
- tokenizer=tokenizer,
27
- text_encoder_2=text_encoder_2,
28
- tokenizer_2=tokenizer_2,
29
- vae=vae,
30
- transformer=transformer,
31
- ).to("cuda")
32
 
33
  MAX_SEED = np.iinfo(np.int32).max
34
  MAX_IMAGE_SIZE = 2048
@@ -40,12 +21,12 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
40
  seed = random.randint(0, MAX_SEED)
41
  generator = torch.Generator().manual_seed(seed)
42
  image = pipe(
43
- prompt = prompt,
44
- width = width,
45
- height = height,
46
- num_inference_steps = num_inference_steps,
47
- generator = generator,
48
- guidance_scale=guidance_scale
49
  ).images[0]
50
  return image, seed
51
 
 
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
 
9
  dtype = torch.bfloat16
 
 
 
 
 
 
 
 
 
 
 
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
12
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
 
 
 
 
 
 
 
 
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
  MAX_IMAGE_SIZE = 2048
 
21
  seed = random.randint(0, MAX_SEED)
22
  generator = torch.Generator().manual_seed(seed)
23
  image = pipe(
24
+ prompt = prompt,
25
+ width = width,
26
+ height = height,
27
+ num_inference_steps = num_inference_steps,
28
+ generator = generator,
29
+ guidance_scale=guidance_scale
30
  ).images[0]
31
  return image, seed
32