Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import math | |
import time | |
import numpy as np | |
import fcbh.model_base | |
import fcbh.ldm.modules.diffusionmodules.openaimodel | |
import fcbh.samplers | |
import fcbh.model_management | |
import modules.anisotropic as anisotropic | |
import fcbh.ldm.modules.attention | |
import fcbh.k_diffusion.sampling | |
import fcbh.sd1_clip | |
import modules.inpaint_worker as inpaint_worker | |
import fcbh.ldm.modules.diffusionmodules.openaimodel | |
import fcbh.ldm.modules.diffusionmodules.model | |
import fcbh.sd | |
import fcbh.cldm.cldm | |
import fcbh.model_patcher | |
import fcbh.samplers | |
import fcbh.cli_args | |
import modules.advanced_parameters as advanced_parameters | |
import warnings | |
import safetensors.torch | |
import modules.constants as constants | |
from einops import repeat | |
from fcbh.k_diffusion.sampling import BatchedBrownianTree | |
from fcbh.ldm.modules.diffusionmodules.openaimodel import forward_timestep_embed, apply_control | |
from fcbh.ldm.modules.diffusionmodules.util import make_beta_schedule | |
sharpness = 2.0 | |
adm_scaler_end = 0.3 | |
positive_adm_scale = 1.5 | |
negative_adm_scale = 0.8 | |
adaptive_cfg = 7.0 | |
global_diffusion_progress = 0 | |
eps_record = None | |
def calculate_weight_patched(self, patches, weight, key): | |
for p in patches: | |
alpha = p[0] | |
v = p[1] | |
strength_model = p[2] | |
if strength_model != 1.0: | |
weight *= strength_model | |
if isinstance(v, list): | |
v = (self.calculate_weight(v[1:], v[0].clone(), key),) | |
if len(v) == 1: | |
w1 = v[0] | |
if alpha != 0.0: | |
if w1.shape != weight.shape: | |
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) | |
else: | |
weight += alpha * fcbh.model_management.cast_to_device(w1, weight.device, weight.dtype) | |
elif len(v) == 3: | |
# fooocus | |
w1 = fcbh.model_management.cast_to_device(v[0], weight.device, torch.float32) | |
w_min = fcbh.model_management.cast_to_device(v[1], weight.device, torch.float32) | |
w_max = fcbh.model_management.cast_to_device(v[2], weight.device, torch.float32) | |
w1 = (w1 / 255.0) * (w_max - w_min) + w_min | |
if alpha != 0.0: | |
if w1.shape != weight.shape: | |
print("WARNING SHAPE MISMATCH {} FOOOCUS WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) | |
else: | |
weight += alpha * fcbh.model_management.cast_to_device(w1, weight.device, weight.dtype) | |
elif len(v) == 4: # lora/locon | |
mat1 = fcbh.model_management.cast_to_device(v[0], weight.device, torch.float32) | |
mat2 = fcbh.model_management.cast_to_device(v[1], weight.device, torch.float32) | |
if v[2] is not None: | |
alpha *= v[2] / mat2.shape[0] | |
if v[3] is not None: | |
# locon mid weights, hopefully the math is fine because I didn't properly test it | |
mat3 = fcbh.model_management.cast_to_device(v[3], weight.device, torch.float32) | |
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] | |
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), | |
mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) | |
try: | |
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape( | |
weight.shape).type(weight.dtype) | |
except Exception as e: | |
print("ERROR", key, e) | |
elif len(v) == 8: # lokr | |
w1 = v[0] | |
w2 = v[1] | |
w1_a = v[3] | |
w1_b = v[4] | |
w2_a = v[5] | |
w2_b = v[6] | |
t2 = v[7] | |
dim = None | |
if w1 is None: | |
dim = w1_b.shape[0] | |
w1 = torch.mm(fcbh.model_management.cast_to_device(w1_a, weight.device, torch.float32), | |
fcbh.model_management.cast_to_device(w1_b, weight.device, torch.float32)) | |
else: | |
w1 = fcbh.model_management.cast_to_device(w1, weight.device, torch.float32) | |
if w2 is None: | |
dim = w2_b.shape[0] | |
if t2 is None: | |
w2 = torch.mm(fcbh.model_management.cast_to_device(w2_a, weight.device, torch.float32), | |
fcbh.model_management.cast_to_device(w2_b, weight.device, torch.float32)) | |
else: | |
w2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
fcbh.model_management.cast_to_device(t2, weight.device, torch.float32), | |
fcbh.model_management.cast_to_device(w2_b, weight.device, torch.float32), | |
fcbh.model_management.cast_to_device(w2_a, weight.device, torch.float32)) | |
else: | |
w2 = fcbh.model_management.cast_to_device(w2, weight.device, torch.float32) | |
if len(w2.shape) == 4: | |
w1 = w1.unsqueeze(2).unsqueeze(2) | |
if v[2] is not None and dim is not None: | |
alpha *= v[2] / dim | |
try: | |
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype) | |
except Exception as e: | |
print("ERROR", key, e) | |
else: # loha | |
w1a = v[0] | |
w1b = v[1] | |
if v[2] is not None: | |
alpha *= v[2] / w1b.shape[0] | |
w2a = v[3] | |
w2b = v[4] | |
if v[5] is not None: # cp decomposition | |
t1 = v[5] | |
t2 = v[6] | |
m1 = torch.einsum('i j k l, j r, i p -> p r k l', | |
fcbh.model_management.cast_to_device(t1, weight.device, torch.float32), | |
fcbh.model_management.cast_to_device(w1b, weight.device, torch.float32), | |
fcbh.model_management.cast_to_device(w1a, weight.device, torch.float32)) | |
m2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
fcbh.model_management.cast_to_device(t2, weight.device, torch.float32), | |
fcbh.model_management.cast_to_device(w2b, weight.device, torch.float32), | |
fcbh.model_management.cast_to_device(w2a, weight.device, torch.float32)) | |
else: | |
m1 = torch.mm(fcbh.model_management.cast_to_device(w1a, weight.device, torch.float32), | |
fcbh.model_management.cast_to_device(w1b, weight.device, torch.float32)) | |
m2 = torch.mm(fcbh.model_management.cast_to_device(w2a, weight.device, torch.float32), | |
fcbh.model_management.cast_to_device(w2b, weight.device, torch.float32)) | |
try: | |
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype) | |
except Exception as e: | |
print("ERROR", key, e) | |
return weight | |
class BrownianTreeNoiseSamplerPatched: | |
transform = None | |
tree = None | |
global_sigma_min = 1.0 | |
global_sigma_max = 1.0 | |
def global_init(x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False): | |
t0, t1 = transform(torch.as_tensor(sigma_min)), transform(torch.as_tensor(sigma_max)) | |
BrownianTreeNoiseSamplerPatched.transform = transform | |
BrownianTreeNoiseSamplerPatched.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu) | |
BrownianTreeNoiseSamplerPatched.global_sigma_min = sigma_min | |
BrownianTreeNoiseSamplerPatched.global_sigma_max = sigma_max | |
def __init__(self, *args, **kwargs): | |
pass | |
def __call__(sigma, sigma_next): | |
transform = BrownianTreeNoiseSamplerPatched.transform | |
tree = BrownianTreeNoiseSamplerPatched.tree | |
t0, t1 = transform(torch.as_tensor(sigma)), transform(torch.as_tensor(sigma_next)) | |
return tree(t0, t1) / (t1 - t0).abs().sqrt() | |
def compute_cfg(uncond, cond, cfg_scale, t): | |
global adaptive_cfg | |
mimic_cfg = float(adaptive_cfg) | |
real_cfg = float(cfg_scale) | |
real_eps = uncond + real_cfg * (cond - uncond) | |
if cfg_scale > adaptive_cfg: | |
mimicked_eps = uncond + mimic_cfg * (cond - uncond) | |
return real_eps * t + mimicked_eps * (1 - t) | |
else: | |
return real_eps | |
def patched_sampler_cfg_function(args): | |
global eps_record | |
positive_eps = args['cond'] | |
negative_eps = args['uncond'] | |
cfg_scale = args['cond_scale'] | |
positive_x0 = args['input'] - positive_eps | |
sigma = args['sigma'] | |
alpha = 0.001 * sharpness * global_diffusion_progress | |
positive_eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0) | |
positive_eps_degraded_weighted = positive_eps_degraded * alpha + positive_eps * (1.0 - alpha) | |
final_eps = compute_cfg(uncond=negative_eps, cond=positive_eps_degraded_weighted, | |
cfg_scale=cfg_scale, t=global_diffusion_progress) | |
if eps_record is not None: | |
eps_record = (final_eps / sigma).cpu() | |
return final_eps | |
def sdxl_encode_adm_patched(self, **kwargs): | |
global positive_adm_scale, negative_adm_scale | |
clip_pooled = fcbh.model_base.sdxl_pooled(kwargs, self.noise_augmentor) | |
width = kwargs.get("width", 768) | |
height = kwargs.get("height", 768) | |
target_width = width | |
target_height = height | |
if kwargs.get("prompt_type", "") == "negative": | |
width = float(width) * negative_adm_scale | |
height = float(height) * negative_adm_scale | |
elif kwargs.get("prompt_type", "") == "positive": | |
width = float(width) * positive_adm_scale | |
height = float(height) * positive_adm_scale | |
# Avoid artifacts | |
width = int(width) | |
height = int(height) | |
crop_w = 0 | |
crop_h = 0 | |
target_width = int(target_width) | |
target_height = int(target_height) | |
out_a = [self.embedder(torch.Tensor([height])), self.embedder(torch.Tensor([width])), | |
self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])), | |
self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width]))] | |
flat_a = torch.flatten(torch.cat(out_a)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) | |
out_b = [self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width])), | |
self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])), | |
self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width]))] | |
flat_b = torch.flatten(torch.cat(out_b)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) | |
return torch.cat((clip_pooled.to(flat_a.device), flat_a, clip_pooled.to(flat_b.device), flat_b), dim=1) | |
def encode_token_weights_patched_with_a1111_method(self, token_weight_pairs): | |
to_encode = list() | |
max_token_len = 0 | |
has_weights = False | |
for x in token_weight_pairs: | |
tokens = list(map(lambda a: a[0], x)) | |
max_token_len = max(len(tokens), max_token_len) | |
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x)) | |
to_encode.append(tokens) | |
sections = len(to_encode) | |
if has_weights or sections == 0: | |
to_encode.append(fcbh.sd1_clip.gen_empty_tokens(self.special_tokens, max_token_len)) | |
out, pooled = self.encode(to_encode) | |
if pooled is not None: | |
first_pooled = pooled[0:1].cpu() | |
else: | |
first_pooled = pooled | |
output = [] | |
for k in range(0, sections): | |
z = out[k:k + 1] | |
if has_weights: | |
original_mean = z.mean() | |
z_empty = out[-1] | |
for i in range(len(z)): | |
for j in range(len(z[i])): | |
weight = token_weight_pairs[k][j][1] | |
if weight != 1.0: | |
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j] | |
new_mean = z.mean() | |
z = z * (original_mean / new_mean) | |
output.append(z) | |
if len(output) == 0: | |
return out[-1:].cpu(), first_pooled | |
return torch.cat(output, dim=-2).cpu(), first_pooled | |
def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None): | |
if inpaint_worker.current_task is not None: | |
latent_processor = self.inner_model.inner_model.process_latent_in | |
inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x) | |
inpaint_mask = inpaint_worker.current_task.latent_mask.to(x) | |
if getattr(self, 'energy_generator', None) is None: | |
# avoid bad results by using different seeds. | |
self.energy_generator = torch.Generator(device='cpu').manual_seed((seed + 1) % constants.MAX_SEED) | |
if inpaint_worker.current_task.processing_sampler_in: | |
energy_sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(x.shape) - 1)) | |
current_energy = torch.randn( | |
x.size(), dtype=x.dtype, generator=self.energy_generator, device="cpu").to(x) * energy_sigma | |
x = x * inpaint_mask + (inpaint_latent + current_energy) * (1.0 - inpaint_mask) | |
out = self.inner_model(x, sigma, | |
cond=cond, | |
uncond=uncond, | |
cond_scale=cond_scale, | |
model_options=model_options, | |
seed=seed) | |
if inpaint_worker.current_task.processing_sampler_out: | |
out = out * inpaint_mask + inpaint_latent * (1.0 - inpaint_mask) | |
else: | |
out = self.inner_model(x, sigma, | |
cond=cond, | |
uncond=uncond, | |
cond_scale=cond_scale, | |
model_options=model_options, | |
seed=seed) | |
return out | |
def timed_adm(y, timesteps): | |
if isinstance(y, torch.Tensor) and int(y.dim()) == 2 and int(y.shape[1]) == 5632: | |
y_mask = (timesteps > 999.0 * (1.0 - float(adm_scaler_end))).to(y)[..., None] | |
y_with_adm = y[..., :2816].clone() | |
y_without_adm = y[..., 2816:].clone() | |
return y_with_adm * y_mask + y_without_adm * (1.0 - y_mask) | |
return y | |
def patched_timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
# Consistent with Kohya to reduce differences between model training and inference. | |
if not repeat_only: | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
else: | |
embedding = repeat(timesteps, 'b -> b d', d=dim) | |
return embedding | |
def patched_cldm_forward(self, x, hint, timesteps, context, y=None, **kwargs): | |
t_emb = fcbh.ldm.modules.diffusionmodules.openaimodel.timestep_embedding( | |
timesteps, self.model_channels, repeat_only=False).to(self.dtype) | |
emb = self.time_embed(t_emb) | |
guided_hint = self.input_hint_block(hint, emb, context) | |
y = timed_adm(y, timesteps) | |
outs = [] | |
hs = [] | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x.type(self.dtype) | |
for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
outs.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
outs.append(self.middle_block_out(h, emb, context)) | |
if advanced_parameters.controlnet_softness > 0: | |
for i in range(10): | |
k = 1.0 - float(i) / 9.0 | |
outs[i] = outs[i] * (1.0 - advanced_parameters.controlnet_softness * k) | |
return outs | |
def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): | |
global global_diffusion_progress | |
self.current_step = 1.0 - timesteps.to(x) / 999.0 | |
global_diffusion_progress = float(self.current_step.detach().cpu().numpy().tolist()[0]) | |
transformer_options["original_shape"] = list(x.shape) | |
transformer_options["current_index"] = 0 | |
transformer_patches = transformer_options.get("patches", {}) | |
y = timed_adm(y, timesteps) | |
hs = [] | |
t_emb = fcbh.ldm.modules.diffusionmodules.openaimodel.timestep_embedding( | |
timesteps, self.model_channels, repeat_only=False).to(self.dtype) | |
emb = self.time_embed(t_emb) | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x.type(self.dtype) | |
for id, module in enumerate(self.input_blocks): | |
transformer_options["block"] = ("input", id) | |
h = forward_timestep_embed(module, h, emb, context, transformer_options) | |
h = apply_control(h, control, 'input') | |
if "input_block_patch" in transformer_patches: | |
patch = transformer_patches["input_block_patch"] | |
for p in patch: | |
h = p(h, transformer_options) | |
hs.append(h) | |
if "input_block_patch_after_skip" in transformer_patches: | |
patch = transformer_patches["input_block_patch_after_skip"] | |
for p in patch: | |
h = p(h, transformer_options) | |
transformer_options["block"] = ("middle", 0) | |
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options) | |
h = apply_control(h, control, 'middle') | |
for id, module in enumerate(self.output_blocks): | |
transformer_options["block"] = ("output", id) | |
hsp = hs.pop() | |
hsp = apply_control(hsp, control, 'output') | |
if "output_block_patch" in transformer_patches: | |
patch = transformer_patches["output_block_patch"] | |
for p in patch: | |
h, hsp = p(h, hsp, transformer_options) | |
h = torch.cat([h, hsp], dim=1) | |
del hsp | |
if len(hs) > 0: | |
output_shape = hs[-1].shape | |
else: | |
output_shape = None | |
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape) | |
h = h.type(x.dtype) | |
if self.predict_codebook_ids: | |
return self.id_predictor(h) | |
else: | |
return self.out(h) | |
def patched_register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
# Consistent with Kohya to reduce differences between model training and inference. | |
if given_betas is not None: | |
betas = given_betas | |
else: | |
betas = make_beta_schedule( | |
beta_schedule, | |
timesteps, | |
linear_start=linear_start, | |
linear_end=linear_end, | |
cosine_s=cosine_s) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.linear_start = linear_start | |
self.linear_end = linear_end | |
sigmas = torch.tensor(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, dtype=torch.float32) | |
self.set_sigmas(sigmas) | |
return | |
def patched_load_models_gpu(*args, **kwargs): | |
execution_start_time = time.perf_counter() | |
y = fcbh.model_management.load_models_gpu_origin(*args, **kwargs) | |
moving_time = time.perf_counter() - execution_start_time | |
if moving_time > 0.1: | |
print(f'[Fooocus Model Management] Moving model(s) has taken {moving_time:.2f} seconds') | |
return y | |
def build_loaded(module, loader_name): | |
original_loader_name = loader_name + '_origin' | |
if not hasattr(module, original_loader_name): | |
setattr(module, original_loader_name, getattr(module, loader_name)) | |
original_loader = getattr(module, original_loader_name) | |
def loader(*args, **kwargs): | |
result = None | |
try: | |
result = original_loader(*args, **kwargs) | |
except Exception as e: | |
result = None | |
exp = str(e) + '\n' | |
for path in list(args) + list(kwargs.values()): | |
if isinstance(path, str): | |
if os.path.exists(path): | |
exp += f'File corrupted: {path} \n' | |
corrupted_backup_file = path + '.corrupted' | |
if os.path.exists(corrupted_backup_file): | |
os.remove(corrupted_backup_file) | |
os.replace(path, corrupted_backup_file) | |
if os.path.exists(path): | |
os.remove(path) | |
exp += f'Fooocus has tried to move the corrupted file to {corrupted_backup_file} \n' | |
exp += f'You may try again now and Fooocus will download models again. \n' | |
raise ValueError(exp) | |
return result | |
setattr(module, loader_name, loader) | |
return | |
def patch_all(): | |
if not hasattr(fcbh.model_management, 'load_models_gpu_origin'): | |
fcbh.model_management.load_models_gpu_origin = fcbh.model_management.load_models_gpu | |
fcbh.model_management.load_models_gpu = patched_load_models_gpu | |
fcbh.model_patcher.ModelPatcher.calculate_weight = calculate_weight_patched | |
fcbh.cldm.cldm.ControlNet.forward = patched_cldm_forward | |
fcbh.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = patched_unet_forward | |
fcbh.model_base.SDXL.encode_adm = sdxl_encode_adm_patched | |
fcbh.sd1_clip.ClipTokenWeightEncoder.encode_token_weights = encode_token_weights_patched_with_a1111_method | |
fcbh.samplers.KSamplerX0Inpaint.forward = patched_KSamplerX0Inpaint_forward | |
fcbh.k_diffusion.sampling.BrownianTreeNoiseSampler = BrownianTreeNoiseSamplerPatched | |
fcbh.ldm.modules.diffusionmodules.openaimodel.timestep_embedding = patched_timestep_embedding | |
fcbh.model_base.ModelSamplingDiscrete._register_schedule = patched_register_schedule | |
warnings.filterwarnings(action='ignore', module='torchsde') | |
build_loaded(safetensors.torch, 'load_file') | |
build_loaded(torch, 'load') | |
return | |