import os import torch import math import time import numpy as np import fcbh.model_base import fcbh.ldm.modules.diffusionmodules.openaimodel import fcbh.samplers import fcbh.model_management import modules.anisotropic as anisotropic import fcbh.ldm.modules.attention import fcbh.k_diffusion.sampling import fcbh.sd1_clip import modules.inpaint_worker as inpaint_worker import fcbh.ldm.modules.diffusionmodules.openaimodel import fcbh.ldm.modules.diffusionmodules.model import fcbh.sd import fcbh.cldm.cldm import fcbh.model_patcher import fcbh.samplers import fcbh.cli_args import modules.advanced_parameters as advanced_parameters import warnings import safetensors.torch import modules.constants as constants from einops import repeat from fcbh.k_diffusion.sampling import BatchedBrownianTree from fcbh.ldm.modules.diffusionmodules.openaimodel import forward_timestep_embed, apply_control from fcbh.ldm.modules.diffusionmodules.util import make_beta_schedule sharpness = 2.0 adm_scaler_end = 0.3 positive_adm_scale = 1.5 negative_adm_scale = 0.8 adaptive_cfg = 7.0 global_diffusion_progress = 0 eps_record = None def calculate_weight_patched(self, patches, weight, key): for p in patches: alpha = p[0] v = p[1] strength_model = p[2] if strength_model != 1.0: weight *= strength_model if isinstance(v, list): v = (self.calculate_weight(v[1:], v[0].clone(), key),) if len(v) == 1: w1 = v[0] if alpha != 0.0: if w1.shape != weight.shape: print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) else: weight += alpha * fcbh.model_management.cast_to_device(w1, weight.device, weight.dtype) elif len(v) == 3: # fooocus w1 = fcbh.model_management.cast_to_device(v[0], weight.device, torch.float32) w_min = fcbh.model_management.cast_to_device(v[1], weight.device, torch.float32) w_max = fcbh.model_management.cast_to_device(v[2], weight.device, torch.float32) w1 = (w1 / 255.0) * (w_max - w_min) + w_min if alpha != 0.0: if w1.shape != weight.shape: print("WARNING SHAPE MISMATCH {} FOOOCUS WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) else: weight += alpha * fcbh.model_management.cast_to_device(w1, weight.device, weight.dtype) elif len(v) == 4: # lora/locon mat1 = fcbh.model_management.cast_to_device(v[0], weight.device, torch.float32) mat2 = fcbh.model_management.cast_to_device(v[1], weight.device, torch.float32) if v[2] is not None: alpha *= v[2] / mat2.shape[0] if v[3] is not None: # locon mid weights, hopefully the math is fine because I didn't properly test it mat3 = fcbh.model_management.cast_to_device(v[3], weight.device, torch.float32) final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) try: weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape( weight.shape).type(weight.dtype) except Exception as e: print("ERROR", key, e) elif len(v) == 8: # lokr w1 = v[0] w2 = v[1] w1_a = v[3] w1_b = v[4] w2_a = v[5] w2_b = v[6] t2 = v[7] dim = None if w1 is None: dim = w1_b.shape[0] w1 = torch.mm(fcbh.model_management.cast_to_device(w1_a, weight.device, torch.float32), fcbh.model_management.cast_to_device(w1_b, weight.device, torch.float32)) else: w1 = fcbh.model_management.cast_to_device(w1, weight.device, torch.float32) if w2 is None: dim = w2_b.shape[0] if t2 is None: w2 = torch.mm(fcbh.model_management.cast_to_device(w2_a, weight.device, torch.float32), fcbh.model_management.cast_to_device(w2_b, weight.device, torch.float32)) else: w2 = torch.einsum('i j k l, j r, i p -> p r k l', fcbh.model_management.cast_to_device(t2, weight.device, torch.float32), fcbh.model_management.cast_to_device(w2_b, weight.device, torch.float32), fcbh.model_management.cast_to_device(w2_a, weight.device, torch.float32)) else: w2 = fcbh.model_management.cast_to_device(w2, weight.device, torch.float32) if len(w2.shape) == 4: w1 = w1.unsqueeze(2).unsqueeze(2) if v[2] is not None and dim is not None: alpha *= v[2] / dim try: weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype) except Exception as e: print("ERROR", key, e) else: # loha w1a = v[0] w1b = v[1] if v[2] is not None: alpha *= v[2] / w1b.shape[0] w2a = v[3] w2b = v[4] if v[5] is not None: # cp decomposition t1 = v[5] t2 = v[6] m1 = torch.einsum('i j k l, j r, i p -> p r k l', fcbh.model_management.cast_to_device(t1, weight.device, torch.float32), fcbh.model_management.cast_to_device(w1b, weight.device, torch.float32), fcbh.model_management.cast_to_device(w1a, weight.device, torch.float32)) m2 = torch.einsum('i j k l, j r, i p -> p r k l', fcbh.model_management.cast_to_device(t2, weight.device, torch.float32), fcbh.model_management.cast_to_device(w2b, weight.device, torch.float32), fcbh.model_management.cast_to_device(w2a, weight.device, torch.float32)) else: m1 = torch.mm(fcbh.model_management.cast_to_device(w1a, weight.device, torch.float32), fcbh.model_management.cast_to_device(w1b, weight.device, torch.float32)) m2 = torch.mm(fcbh.model_management.cast_to_device(w2a, weight.device, torch.float32), fcbh.model_management.cast_to_device(w2b, weight.device, torch.float32)) try: weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype) except Exception as e: print("ERROR", key, e) return weight class BrownianTreeNoiseSamplerPatched: transform = None tree = None global_sigma_min = 1.0 global_sigma_max = 1.0 @staticmethod def global_init(x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False): t0, t1 = transform(torch.as_tensor(sigma_min)), transform(torch.as_tensor(sigma_max)) BrownianTreeNoiseSamplerPatched.transform = transform BrownianTreeNoiseSamplerPatched.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu) BrownianTreeNoiseSamplerPatched.global_sigma_min = sigma_min BrownianTreeNoiseSamplerPatched.global_sigma_max = sigma_max def __init__(self, *args, **kwargs): pass @staticmethod def __call__(sigma, sigma_next): transform = BrownianTreeNoiseSamplerPatched.transform tree = BrownianTreeNoiseSamplerPatched.tree t0, t1 = transform(torch.as_tensor(sigma)), transform(torch.as_tensor(sigma_next)) return tree(t0, t1) / (t1 - t0).abs().sqrt() def compute_cfg(uncond, cond, cfg_scale, t): global adaptive_cfg mimic_cfg = float(adaptive_cfg) real_cfg = float(cfg_scale) real_eps = uncond + real_cfg * (cond - uncond) if cfg_scale > adaptive_cfg: mimicked_eps = uncond + mimic_cfg * (cond - uncond) return real_eps * t + mimicked_eps * (1 - t) else: return real_eps def patched_sampler_cfg_function(args): global eps_record positive_eps = args['cond'] negative_eps = args['uncond'] cfg_scale = args['cond_scale'] positive_x0 = args['input'] - positive_eps sigma = args['sigma'] alpha = 0.001 * sharpness * global_diffusion_progress positive_eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0) positive_eps_degraded_weighted = positive_eps_degraded * alpha + positive_eps * (1.0 - alpha) final_eps = compute_cfg(uncond=negative_eps, cond=positive_eps_degraded_weighted, cfg_scale=cfg_scale, t=global_diffusion_progress) if eps_record is not None: eps_record = (final_eps / sigma).cpu() return final_eps def sdxl_encode_adm_patched(self, **kwargs): global positive_adm_scale, negative_adm_scale clip_pooled = fcbh.model_base.sdxl_pooled(kwargs, self.noise_augmentor) width = kwargs.get("width", 768) height = kwargs.get("height", 768) target_width = width target_height = height if kwargs.get("prompt_type", "") == "negative": width = float(width) * negative_adm_scale height = float(height) * negative_adm_scale elif kwargs.get("prompt_type", "") == "positive": width = float(width) * positive_adm_scale height = float(height) * positive_adm_scale # Avoid artifacts width = int(width) height = int(height) crop_w = 0 crop_h = 0 target_width = int(target_width) target_height = int(target_height) out_a = [self.embedder(torch.Tensor([height])), self.embedder(torch.Tensor([width])), self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])), self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width]))] flat_a = torch.flatten(torch.cat(out_a)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) out_b = [self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width])), self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])), self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width]))] flat_b = torch.flatten(torch.cat(out_b)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) return torch.cat((clip_pooled.to(flat_a.device), flat_a, clip_pooled.to(flat_b.device), flat_b), dim=1) def encode_token_weights_patched_with_a1111_method(self, token_weight_pairs): to_encode = list() max_token_len = 0 has_weights = False for x in token_weight_pairs: tokens = list(map(lambda a: a[0], x)) max_token_len = max(len(tokens), max_token_len) has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x)) to_encode.append(tokens) sections = len(to_encode) if has_weights or sections == 0: to_encode.append(fcbh.sd1_clip.gen_empty_tokens(self.special_tokens, max_token_len)) out, pooled = self.encode(to_encode) if pooled is not None: first_pooled = pooled[0:1].cpu() else: first_pooled = pooled output = [] for k in range(0, sections): z = out[k:k + 1] if has_weights: original_mean = z.mean() z_empty = out[-1] for i in range(len(z)): for j in range(len(z[i])): weight = token_weight_pairs[k][j][1] if weight != 1.0: z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j] new_mean = z.mean() z = z * (original_mean / new_mean) output.append(z) if len(output) == 0: return out[-1:].cpu(), first_pooled return torch.cat(output, dim=-2).cpu(), first_pooled def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None): if inpaint_worker.current_task is not None: latent_processor = self.inner_model.inner_model.process_latent_in inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x) inpaint_mask = inpaint_worker.current_task.latent_mask.to(x) if getattr(self, 'energy_generator', None) is None: # avoid bad results by using different seeds. self.energy_generator = torch.Generator(device='cpu').manual_seed((seed + 1) % constants.MAX_SEED) if inpaint_worker.current_task.processing_sampler_in: energy_sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(x.shape) - 1)) current_energy = torch.randn( x.size(), dtype=x.dtype, generator=self.energy_generator, device="cpu").to(x) * energy_sigma x = x * inpaint_mask + (inpaint_latent + current_energy) * (1.0 - inpaint_mask) out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed) if inpaint_worker.current_task.processing_sampler_out: out = out * inpaint_mask + inpaint_latent * (1.0 - inpaint_mask) else: out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed) return out def timed_adm(y, timesteps): if isinstance(y, torch.Tensor) and int(y.dim()) == 2 and int(y.shape[1]) == 5632: y_mask = (timesteps > 999.0 * (1.0 - float(adm_scaler_end))).to(y)[..., None] y_with_adm = y[..., :2816].clone() y_without_adm = y[..., 2816:].clone() return y_with_adm * y_mask + y_without_adm * (1.0 - y_mask) return y def patched_timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): # Consistent with Kohya to reduce differences between model training and inference. if not repeat_only: half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) else: embedding = repeat(timesteps, 'b -> b d', d=dim) return embedding def patched_cldm_forward(self, x, hint, timesteps, context, y=None, **kwargs): t_emb = fcbh.ldm.modules.diffusionmodules.openaimodel.timestep_embedding( timesteps, self.model_channels, repeat_only=False).to(self.dtype) emb = self.time_embed(t_emb) guided_hint = self.input_hint_block(hint, emb, context) y = timed_adm(y, timesteps) outs = [] hs = [] if self.num_classes is not None: assert y.shape[0] == x.shape[0] emb = emb + self.label_emb(y) h = x.type(self.dtype) for module, zero_conv in zip(self.input_blocks, self.zero_convs): if guided_hint is not None: h = module(h, emb, context) h += guided_hint guided_hint = None else: h = module(h, emb, context) outs.append(zero_conv(h, emb, context)) h = self.middle_block(h, emb, context) outs.append(self.middle_block_out(h, emb, context)) if advanced_parameters.controlnet_softness > 0: for i in range(10): k = 1.0 - float(i) / 9.0 outs[i] = outs[i] * (1.0 - advanced_parameters.controlnet_softness * k) return outs def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): global global_diffusion_progress self.current_step = 1.0 - timesteps.to(x) / 999.0 global_diffusion_progress = float(self.current_step.detach().cpu().numpy().tolist()[0]) transformer_options["original_shape"] = list(x.shape) transformer_options["current_index"] = 0 transformer_patches = transformer_options.get("patches", {}) y = timed_adm(y, timesteps) hs = [] t_emb = fcbh.ldm.modules.diffusionmodules.openaimodel.timestep_embedding( timesteps, self.model_channels, repeat_only=False).to(self.dtype) emb = self.time_embed(t_emb) if self.num_classes is not None: assert y.shape[0] == x.shape[0] emb = emb + self.label_emb(y) h = x.type(self.dtype) for id, module in enumerate(self.input_blocks): transformer_options["block"] = ("input", id) h = forward_timestep_embed(module, h, emb, context, transformer_options) h = apply_control(h, control, 'input') if "input_block_patch" in transformer_patches: patch = transformer_patches["input_block_patch"] for p in patch: h = p(h, transformer_options) hs.append(h) if "input_block_patch_after_skip" in transformer_patches: patch = transformer_patches["input_block_patch_after_skip"] for p in patch: h = p(h, transformer_options) transformer_options["block"] = ("middle", 0) h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options) h = apply_control(h, control, 'middle') for id, module in enumerate(self.output_blocks): transformer_options["block"] = ("output", id) hsp = hs.pop() hsp = apply_control(hsp, control, 'output') if "output_block_patch" in transformer_patches: patch = transformer_patches["output_block_patch"] for p in patch: h, hsp = p(h, hsp, transformer_options) h = torch.cat([h, hsp], dim=1) del hsp if len(hs) > 0: output_shape = hs[-1].shape else: output_shape = None h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape) h = h.type(x.dtype) if self.predict_codebook_ids: return self.id_predictor(h) else: return self.out(h) def patched_register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): # Consistent with Kohya to reduce differences between model training and inference. if given_betas is not None: betas = given_betas else: betas = make_beta_schedule( beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) alphas = 1. - betas alphas_cumprod = np.cumprod(alphas, axis=0) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.linear_start = linear_start self.linear_end = linear_end sigmas = torch.tensor(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, dtype=torch.float32) self.set_sigmas(sigmas) return def patched_load_models_gpu(*args, **kwargs): execution_start_time = time.perf_counter() y = fcbh.model_management.load_models_gpu_origin(*args, **kwargs) moving_time = time.perf_counter() - execution_start_time if moving_time > 0.1: print(f'[Fooocus Model Management] Moving model(s) has taken {moving_time:.2f} seconds') return y def build_loaded(module, loader_name): original_loader_name = loader_name + '_origin' if not hasattr(module, original_loader_name): setattr(module, original_loader_name, getattr(module, loader_name)) original_loader = getattr(module, original_loader_name) def loader(*args, **kwargs): result = None try: result = original_loader(*args, **kwargs) except Exception as e: result = None exp = str(e) + '\n' for path in list(args) + list(kwargs.values()): if isinstance(path, str): if os.path.exists(path): exp += f'File corrupted: {path} \n' corrupted_backup_file = path + '.corrupted' if os.path.exists(corrupted_backup_file): os.remove(corrupted_backup_file) os.replace(path, corrupted_backup_file) if os.path.exists(path): os.remove(path) exp += f'Fooocus has tried to move the corrupted file to {corrupted_backup_file} \n' exp += f'You may try again now and Fooocus will download models again. \n' raise ValueError(exp) return result setattr(module, loader_name, loader) return def patch_all(): if not hasattr(fcbh.model_management, 'load_models_gpu_origin'): fcbh.model_management.load_models_gpu_origin = fcbh.model_management.load_models_gpu fcbh.model_management.load_models_gpu = patched_load_models_gpu fcbh.model_patcher.ModelPatcher.calculate_weight = calculate_weight_patched fcbh.cldm.cldm.ControlNet.forward = patched_cldm_forward fcbh.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = patched_unet_forward fcbh.model_base.SDXL.encode_adm = sdxl_encode_adm_patched fcbh.sd1_clip.ClipTokenWeightEncoder.encode_token_weights = encode_token_weights_patched_with_a1111_method fcbh.samplers.KSamplerX0Inpaint.forward = patched_KSamplerX0Inpaint_forward fcbh.k_diffusion.sampling.BrownianTreeNoiseSampler = BrownianTreeNoiseSamplerPatched fcbh.ldm.modules.diffusionmodules.openaimodel.timestep_embedding = patched_timestep_embedding fcbh.model_base.ModelSamplingDiscrete._register_schedule = patched_register_schedule warnings.filterwarnings(action='ignore', module='torchsde') build_loaded(safetensors.torch, 'load_file') build_loaded(torch, 'load') return