HungNP
New single commit message
cb80c28
raw
history blame contribute delete
No virus
14.9 kB
import logging
import numpy as np
from tqdm import tqdm
import torch
from torch import nn
import copy
from torch import optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from models.base import BaseLearner
from utils.inc_net import AdaptiveNet
from utils.toolkit import count_parameters, target2onehot, tensor2numpy
num_workers=8
EPSILON = 1e-8
batch_size = 32
class MEMO(BaseLearner):
def __init__(self, args):
super().__init__(args)
self.args = args
self._old_base = None
self._network = AdaptiveNet(args, True)
logging.info(f'>>> train generalized blocks:{self.args["train_base"]} train_adaptive:{self.args["train_adaptive"]}')
def after_task(self):
self._known_classes = self._total_classes
if self._cur_task == 0:
if self.args['train_base']:
logging.info("Train Generalized Blocks...")
self._network.TaskAgnosticExtractor.train()
for param in self._network.TaskAgnosticExtractor.parameters():
param.requires_grad = True
else:
logging.info("Fix Generalized Blocks...")
self._network.TaskAgnosticExtractor.eval()
for param in self._network.TaskAgnosticExtractor.parameters():
param.requires_grad = False
logging.info('Exemplar size: {}'.format(self.exemplar_size))
def incremental_train(self, data_manager):
self._cur_task += 1
self._total_classes = self._known_classes + data_manager.get_task_size(self._cur_task)
self._network.update_fc(self._total_classes)
logging.info('Learning on {}-{}'.format(self._known_classes, self._total_classes))
if self._cur_task>0:
for i in range(self._cur_task):
for p in self._network.AdaptiveExtractors[i].parameters():
if self.args['train_adaptive'] and i == self._cur_task:
p.requires_grad = True
else:
p.requires_grad = False
logging.info('All params: {}'.format(count_parameters(self._network)))
logging.info('Trainable params: {}'.format(count_parameters(self._network, True)))
train_dataset = data_manager.get_dataset(
np.arange(self._known_classes, self._total_classes),
source='train',
mode='train',
appendent=self._get_memory()
)
self.train_loader = DataLoader(
train_dataset,
batch_size=self.args["batch_size"],
shuffle=True,
num_workers=num_workers
)
test_dataset = data_manager.get_dataset(
np.arange(0, self._total_classes),
source='test',
mode='test'
)
self.test_loader = DataLoader(
test_dataset,
batch_size=self.args["batch_size"],
shuffle=False,
num_workers=num_workers
)
if len(self._multiple_gpus) > 1:
self._network = nn.DataParallel(self._network, self._multiple_gpus)
self._train(self.train_loader, self.test_loader)
self.build_rehearsal_memory(data_manager, self.samples_per_class)
if len(self._multiple_gpus) > 1:
self._network = self._network.module
def set_network(self):
if len(self._multiple_gpus) > 1:
self._network = self._network.module
self._network.train() #All status from eval to train
if self.args['train_base']:
self._network.TaskAgnosticExtractor.train()
else:
self._network.TaskAgnosticExtractor.eval()
# set adaptive extractor's status
self._network.AdaptiveExtractors[-1].train()
if self._cur_task >= 1:
for i in range(self._cur_task):
if self.args['train_adaptive']:
self._network.AdaptiveExtractors[i].train()
else:
self._network.AdaptiveExtractors[i].eval()
if len(self._multiple_gpus) > 1:
self._network = nn.DataParallel(self._network, self._multiple_gpus)
def _train(self, train_loader, test_loader):
self._network.to(self._device)
if self._cur_task==0:
optimizer = optim.SGD(
filter(lambda p: p.requires_grad, self._network.parameters()),
momentum=0.9,
lr=self.args["init_lr"],
weight_decay=self.args["init_weight_decay"]
)
if self.args['scheduler'] == 'steplr':
scheduler = optim.lr_scheduler.MultiStepLR(
optimizer=optimizer,
milestones=self.args['init_milestones'],
gamma=self.args['init_lr_decay']
)
elif self.args['scheduler'] == 'cosine':
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer=optimizer,
T_max=self.args['init_epoch']
)
else:
raise NotImplementedError
if not self.args['skip']:
self._init_train(train_loader, test_loader, optimizer, scheduler)
else:
if isinstance(self._network, nn.DataParallel):
self._network = self._network.module
load_acc = self._network.load_checkpoint(self.args)
self._network.to(self._device)
if len(self._multiple_gpus) > 1:
self._network = nn.DataParallel(self._network, self._multiple_gpus)
cur_test_acc = self._compute_accuracy(self._network, self.test_loader)
logging.info(f"Loaded_Test_Acc:{load_acc} Cur_Test_Acc:{cur_test_acc}")
else:
optimizer = optim.SGD(
filter(lambda p: p.requires_grad, self._network.parameters()),
lr=self.args['lrate'],
momentum=0.9,
weight_decay=self.args['weight_decay']
)
if self.args['scheduler'] == 'steplr':
scheduler = optim.lr_scheduler.MultiStepLR(
optimizer=optimizer,
milestones=self.args['milestones'],
gamma=self.args['lrate_decay']
)
elif self.args['scheduler'] == 'cosine':
assert self.args['t_max'] is not None
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer=optimizer,
T_max=self.args['t_max']
)
else:
raise NotImplementedError
self._update_representation(train_loader, test_loader, optimizer, scheduler)
if len(self._multiple_gpus) > 1:
self._network.module.weight_align(self._total_classes-self._known_classes)
else:
self._network.weight_align(self._total_classes-self._known_classes)
def _init_train(self,train_loader,test_loader,optimizer,scheduler):
prog_bar = tqdm(range(self.args["init_epoch"]))
for _, epoch in enumerate(prog_bar):
self._network.train()
losses = 0.
correct, total = 0, 0
for i, (_, inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(self._device), targets.to(self._device)
logits = self._network(inputs)['logits']
loss=F.cross_entropy(logits,targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses += loss.item()
_, preds = torch.max(logits, dim=1)
correct += preds.eq(targets.expand_as(preds)).cpu().sum()
total += len(targets)
scheduler.step()
train_acc = np.around(tensor2numpy(correct)*100 / total, decimals=2)
if epoch%5==0:
test_acc = self._compute_accuracy(self._network, test_loader)
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}'.format(
self._cur_task, epoch+1, self.args['init_epoch'], losses/len(train_loader), train_acc, test_acc)
else:
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}'.format(
self._cur_task, epoch+1, self.args['init_epoch'], losses/len(train_loader), train_acc)
# prog_bar.set_description(info)
logging.info(info)
def _update_representation(self, train_loader, test_loader, optimizer, scheduler):
prog_bar = tqdm(range(self.args["epochs"]))
for _, epoch in enumerate(prog_bar):
self.set_network()
losses = 0.
losses_clf=0.
losses_aux=0.
correct, total = 0, 0
for i, (_, inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(self._device), targets.to(self._device)
outputs= self._network(inputs)
logits,aux_logits=outputs["logits"],outputs["aux_logits"]
loss_clf=F.cross_entropy(logits,targets)
aux_targets = targets.clone()
aux_targets=torch.where(aux_targets-self._known_classes+1.0>0, aux_targets-self._known_classes+1.0,torch.Tensor([.0]).to(self.args["device"][0]))
loss_aux=F.cross_entropy(aux_logits,aux_targets.long())
loss=loss_clf+self.args['alpha_aux']*loss_aux
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses += loss.item()
losses_aux+=loss_aux.item()
losses_clf+=loss_clf.item()
_, preds = torch.max(logits, dim=1)
correct += preds.eq(targets.expand_as(preds)).cpu().sum()
total += len(targets)
scheduler.step()
train_acc = np.around(tensor2numpy(correct)*100 / total, decimals=2)
if epoch%5==0:
test_acc = self._compute_accuracy(self._network, test_loader)
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_aux {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}'.format(
self._cur_task, epoch+1, self.args["epochs"], losses/len(train_loader),losses_clf/len(train_loader),losses_aux/len(train_loader),train_acc, test_acc)
else:
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_aux {:.3f}, Train_accy {:.2f}'.format(
self._cur_task, epoch+1, self.args["epochs"], losses/len(train_loader), losses_clf/len(train_loader),losses_aux/len(train_loader),train_acc)
prog_bar.set_description(info)
logging.info(info)
def save_checkpoint(self, test_acc):
assert self.args['model_name'] == 'finetune'
checkpoint_name = f"checkpoints/finetune_{self.args['csv_name']}"
_checkpoint_cpu = copy.deepcopy(self._network)
if isinstance(_checkpoint_cpu, nn.DataParallel):
_checkpoint_cpu = _checkpoint_cpu.module
_checkpoint_cpu.cpu()
save_dict = {
"tasks": self._cur_task,
"convnet": _checkpoint_cpu.convnet.state_dict(),
"fc":_checkpoint_cpu.fc.state_dict(),
"test_acc": test_acc
}
torch.save(save_dict, "{}_{}.pkl".format(checkpoint_name, self._cur_task))
def _construct_exemplar(self, data_manager, m):
logging.info("Constructing exemplars...({} per classes)".format(m))
for class_idx in range(self._known_classes, self._total_classes):
data, targets, idx_dataset = data_manager.get_dataset(
np.arange(class_idx, class_idx + 1),
source="train",
mode="test",
ret_data=True,
)
idx_loader = DataLoader(
idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4
)
vectors, _ = self._extract_vectors(idx_loader)
vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
class_mean = np.mean(vectors, axis=0)
# Select
selected_exemplars = []
exemplar_vectors = [] # [n, feature_dim]
for k in range(1, m + 1):
S = np.sum(
exemplar_vectors, axis=0
) # [feature_dim] sum of selected exemplars vectors
mu_p = (vectors + S) / k # [n, feature_dim] sum to all vectors
i = np.argmin(np.sqrt(np.sum((class_mean - mu_p) ** 2, axis=1)))
selected_exemplars.append(
np.array(data[i])
) # New object to avoid passing by inference
exemplar_vectors.append(
np.array(vectors[i])
) # New object to avoid passing by inference
vectors = np.delete(
vectors, i, axis=0
) # Remove it to avoid duplicative selection
data = np.delete(
data, i, axis=0
) # Remove it to avoid duplicative selection
if len(vectors) == 0:
break
# uniques = np.unique(selected_exemplars, axis=0)
# print('Unique elements: {}'.format(len(uniques)))
selected_exemplars = np.array(selected_exemplars)
# exemplar_targets = np.full(m, class_idx)
exemplar_targets = np.full(selected_exemplars.shape[0], class_idx)
self._data_memory = (
np.concatenate((self._data_memory, selected_exemplars))
if len(self._data_memory) != 0
else selected_exemplars
)
self._targets_memory = (
np.concatenate((self._targets_memory, exemplar_targets))
if len(self._targets_memory) != 0
else exemplar_targets
)
# Exemplar mean
idx_dataset = data_manager.get_dataset(
[],
source="train",
mode="test",
appendent=(selected_exemplars, exemplar_targets),
)
idx_loader = DataLoader(
idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4
)
vectors, _ = self._extract_vectors(idx_loader)
vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
mean = np.mean(vectors, axis=0)
mean = mean / np.linalg.norm(mean)
self._class_means[class_idx, :] = mean