pheinisch's picture
Upload HGTrainer.py
6ade49b
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Literal
import torch
import numpy
from transformers import Trainer, PreTrainedModel, RobertaForSequenceClassification, BatchEncoding, RobertaConfig, \
EvalPrediction
from transformers.modeling_outputs import SequenceClassifierOutput, BaseModelOutput
from loguru import logger
def val_nov_loss(is_val: torch.Tensor, should_val: torch.Tensor, is_nov: torch.Tensor, should_nov: torch.Tensor,
weights: Optional[torch.Tensor] = None, reduce: bool = True) -> torch.Tensor:
if weights is None:
weights = torch.ones_like(should_val)
logger.debug("No weights-vector - assume, all {} samples should count equally", weights.size())
loss_validity = torch.pow(is_val - torch.where(torch.isnan(should_val), is_val, should_val), 2)
loss_novelty = torch.pow(is_nov - torch.where(torch.isnan(should_nov), is_nov, should_nov), 2)
logger.trace("loss_validity: {} / loss_novelty: {}", loss_validity, loss_novelty)
loss = (.5 * (loss_validity * loss_novelty) + .5 * loss_validity + .5 * loss_novelty) * weights
return torch.mean(loss) if reduce else loss
def val_nov_metric(eval_data: EvalPrediction) -> Dict[str, float]:
if isinstance(eval_data.predictions, Tuple) and isinstance(eval_data.label_ids, Tuple) \
or min(len(eval_data.predictions), len(eval_data.label_ids)) >= 2:
logger.trace("Format is as processable ({}: {})", type(eval_data.predictions), len(eval_data.predictions))
if len(eval_data.predictions) != 2:
logger.debug("We expect 2 tuples, but get {}: {}", len(eval_data.predictions), eval_data.predictions)
is_validity = eval_data.predictions[-2]
should_validity = eval_data.label_ids[-2]
is_novelty = eval_data.predictions[-1]
should_novelty = eval_data.label_ids[-1]
return _val_nov_metric(is_validity=is_validity, should_validity=should_validity,
is_novelty=is_novelty, should_novelty=should_novelty)
else:
logger.warning("This metric can't return all metrics properly, "
"because validity and novelty are not distinguishable")
return {
"size": numpy.size(eval_data.label_ids),
"mse_validity": numpy.mean((eval_data.predictions-eval_data.label_ids) ** 2),
"mse_novelty": numpy.mean((eval_data.predictions-eval_data.label_ids) ** 2),
"error_validity": numpy.mean(numpy.abs(eval_data.predictions-eval_data.label_ids)),
"error_novelty": numpy.mean(numpy.abs(eval_data.predictions-eval_data.label_ids)),
"approximately_hits_validity": -1,
"approximately_hits_novelty": -1,
"exact_hits_validity": -1,
"exact_hits_novelty": -1,
"approximately_hits": numpy.count_nonzero(
numpy.where(numpy.abs(eval_data.predictions-eval_data.label_ids) < .2, 1, 0)
) / numpy.size(eval_data.predictions),
"exact_hits": numpy.count_nonzero(
numpy.where(numpy.abs(eval_data.predictions-eval_data.label_ids) < .05, 1, 0)
) / numpy.size(eval_data.predictions),
"accuracy_validity": -1,
"accuracy_novelty": -1,
"accuracy": -1,
"f1_validity": -1,
"f1_novelty": -1,
"f1_macro": -1,
"never_predicted_classes": 4
}
def _val_nov_metric(is_validity: numpy.ndarray, should_validity: numpy.ndarray,
is_novelty: numpy.ndarray, should_novelty: numpy.ndarray) -> Dict[str, float]:
ret = {
"size": numpy.size(is_validity),
"mse_validity": numpy.mean((is_validity - should_validity) ** 2),
"mse_novelty": numpy.mean((is_novelty - should_novelty) ** 2),
"error_validity": numpy.mean(numpy.abs(is_validity - should_validity)),
"error_novelty": numpy.mean(numpy.abs(is_novelty - should_novelty)),
"approximately_hits_validity": numpy.sum(
numpy.where(numpy.abs(is_validity - should_validity) < .2, 1, 0)) / numpy.size(is_validity),
"approximately_hits_novelty": numpy.sum(
numpy.where(numpy.abs(is_novelty - should_novelty) < .2, 1, 0)) / numpy.size(is_novelty),
"exact_hits_validity": numpy.sum(
numpy.where(numpy.abs(is_validity - should_validity) < .05, 1, 0)) / numpy.size(is_validity),
"exact_hits_novelty": numpy.sum(
numpy.where(numpy.abs(is_novelty - should_novelty) < .05, 1, 0)) / numpy.size(is_novelty),
"approximately_hits": numpy.sum(
numpy.where(numpy.abs(is_validity - should_validity) + numpy.abs(is_novelty - should_novelty) < .25, 1, 0)
) / numpy.size(is_validity),
"exact_hits": numpy.sum(
numpy.where(numpy.abs(is_validity - should_validity) + numpy.abs(is_novelty - should_novelty) < .05, 1, 0)
) / numpy.size(is_validity),
"accuracy_validity": numpy.sum(numpy.where(
numpy.any(numpy.stack([
numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5]), axis=0),
numpy.all(numpy.stack([is_validity < .5, should_validity < .5]), axis=0)
]), axis=0),
1, 0
)) / numpy.size(is_validity),
"accuracy_novelty": numpy.sum(numpy.where(
numpy.any(numpy.stack([
numpy.all(numpy.stack([is_novelty >= .5, should_novelty >= .5]), axis=0),
numpy.all(numpy.stack([is_novelty < .5, should_novelty < .5]), axis=0)
]), axis=0),
1, 0
)) / numpy.size(is_validity),
"accuracy": numpy.sum(numpy.where(
numpy.any(numpy.stack([
numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5, is_novelty >= .5, should_novelty >= .5]),
axis=0),
numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5, is_novelty < .5, should_novelty < .5]),
axis=0),
numpy.all(numpy.stack([is_validity < .5, should_validity < .5, is_novelty >= .5, should_novelty >= .5]),
axis=0),
numpy.all(numpy.stack([is_validity < .5, should_validity < .5, is_novelty < .5, should_novelty < .5]),
axis=0)
]), axis=0),
1, 0
)) / numpy.size(is_validity),
"never_predicted_classes": sum(
[int(numpy.all(numpy.abs(is_validity-validity) < .5) and numpy.all(numpy.abs(is_novelty-novelty) < .5))
for validity, novelty in [(1, 1), (1, 0), (0, 1), (0, 0)]]
)
}
ret_base_help = {
"true_positive_validity": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5]), axis=0),
1, 0)),
"true_negative_validity": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_validity < .5, should_validity < .5]), axis=0),
1, 0)),
"true_positive_novelty": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_novelty >= .5, should_novelty >= .5]), axis=0),
1, 0)),
"true_negative_novelty": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_novelty < .5, should_novelty < .5]), axis=0),
1, 0)),
"true_positive_valid_novel": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_validity >= .5, is_novelty >= .5,
should_validity >= .5, should_novelty >= .5]), axis=0),
1, 0)),
"true_positive_nonvalid_novel": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_validity < .5, is_novelty >= .5,
should_validity < .5, should_novelty >= .5]), axis=0),
1, 0)),
"true_positive_valid_nonnovel": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_validity >= .5, is_novelty < .5,
should_validity >= .5, should_novelty < .5]), axis=0),
1, 0)),
"true_positive_nonvalid_nonnovel": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_validity < .5, is_novelty < .5,
should_validity < .5, should_novelty < .5]), axis=0),
1, 0)),
"classified_positive_validity": numpy.sum(numpy.where(is_validity >= .5, 1, 0)),
"classified_negative_validity": numpy.sum(numpy.where(is_validity < .5, 1, 0)),
"classified_positive_novelty": numpy.sum(numpy.where(is_novelty >= .5, 1, 0)),
"classified_negative_novelty": numpy.sum(numpy.where(is_novelty < .5, 1, 0)),
"classified_positive_valid_novel": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_validity >= .5, is_novelty >= .5]), axis=0),
1, 0)),
"classified_positive_nonvalid_novel": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_validity < .5, is_novelty >= .5]), axis=0),
1, 0)),
"classified_positive_valid_nonnovel": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_validity >= .5, is_novelty < .5]), axis=0),
1, 0)),
"classified_positive_nonvalid_nonnovel": numpy.sum(numpy.where(
numpy.all(numpy.stack([is_validity < .5, is_novelty < .5]), axis=0),
1, 0)),
"indeed_positive_validity": numpy.sum(numpy.where(should_validity >= .5, 1, 0)),
"indeed_negative_validity": numpy.sum(numpy.where(should_validity < .5, 1, 0)),
"indeed_positive_novelty": numpy.sum(numpy.where(should_novelty >= .5, 1, 0)),
"indeed_negative_novelty": numpy.sum(numpy.where(should_novelty < .5, 1, 0)),
"indeed_positive_valid_novel": numpy.sum(numpy.where(
numpy.all(numpy.stack([should_validity >= .5, should_novelty >= .5]), axis=0),
1, 0)),
"indeed_positive_nonvalid_novel": numpy.sum(numpy.where(
numpy.all(numpy.stack([should_validity < .5, should_novelty >= .5]), axis=0),
1, 0)),
"indeed_positive_valid_nonnovel": numpy.sum(numpy.where(
numpy.all(numpy.stack([should_validity >= .5, should_novelty < .5]), axis=0),
1, 0)),
"indeed_positive_nonvalid_nonnovel": numpy.sum(numpy.where(
numpy.all(numpy.stack([should_validity < .5, should_novelty < .5]), axis=0),
1, 0)),
}
ret_help = {
"precision_validity": ret_base_help["true_positive_validity"] /
max(1, ret_base_help["classified_positive_validity"]),
"precision_novelty": ret_base_help["true_positive_novelty"] /
max(1, ret_base_help["classified_positive_novelty"]),
"recall_validity": ret_base_help["true_positive_validity"] /
max(1, ret_base_help["indeed_positive_validity"]),
"recall_novelty": ret_base_help["true_positive_novelty"] /
max(1, ret_base_help["indeed_positive_novelty"]),
"precision_val_neg": ret_base_help["true_negative_validity"] /
max(1, ret_base_help["classified_negative_validity"]),
"precision_nov_neg": ret_base_help["true_negative_novelty"] /
max(1, ret_base_help["classified_negative_novelty"]),
"recall_val_neg": ret_base_help["true_negative_validity"] /
max(1, ret_base_help["indeed_negative_validity"]),
"recall_nov_neg": ret_base_help["true_negative_novelty"] /
max(1, ret_base_help["indeed_negative_novelty"]),
"precision_valid_novel": ret_base_help["true_positive_valid_novel"] /
max(1, ret_base_help["classified_positive_valid_novel"]),
"precision_valid_nonnovel": ret_base_help["true_positive_valid_nonnovel"] /
max(1, ret_base_help["classified_positive_valid_nonnovel"]),
"precision_nonvalid_novel": ret_base_help["true_positive_nonvalid_novel"] /
max(1, ret_base_help["classified_positive_nonvalid_novel"]),
"precision_nonvalid_nonnovel": ret_base_help["true_positive_nonvalid_nonnovel"] /
max(1, ret_base_help["classified_positive_nonvalid_nonnovel"]),
"recall_valid_novel": ret_base_help["true_positive_valid_novel"] /
max(1, ret_base_help["indeed_positive_valid_novel"]),
"recall_valid_nonnovel": ret_base_help["true_positive_valid_nonnovel"] /
max(1, ret_base_help["indeed_positive_valid_nonnovel"]),
"recall_nonvalid_novel": ret_base_help["true_positive_nonvalid_novel"] /
max(1, ret_base_help["indeed_positive_nonvalid_novel"]),
"recall_nonvalid_nonnovel": ret_base_help["true_positive_nonvalid_nonnovel"] /
max(1, ret_base_help["indeed_positive_nonvalid_nonnovel"])
}
ret.update({
"f1_validity": 2 * ret_help["precision_validity"] * ret_help["recall_validity"] /
max(1e-4, ret_help["precision_validity"] + ret_help["recall_validity"]),
"f1_novelty": 2 * ret_help["precision_novelty"] * ret_help["recall_novelty"] /
max(1e-4, ret_help["precision_novelty"] + ret_help["recall_novelty"]),
"f1_val_neg": 2 * ret_help["precision_val_neg"] * ret_help["recall_val_neg"] /
max(1e-4, ret_help["precision_val_neg"] + ret_help["recall_val_neg"]),
"f1_nov_neg": 2 * ret_help["precision_nov_neg"] * ret_help["recall_nov_neg"] /
max(1e-4, ret_help["precision_nov_neg"] + ret_help["recall_nov_neg"]),
"f1_valid_novel": 2 * ret_help["precision_valid_novel"] * ret_help["recall_valid_novel"] /
max(1e-4, ret_help["precision_valid_novel"] + ret_help["recall_valid_novel"]),
"f1_valid_nonnovel": 2 * ret_help["precision_valid_nonnovel"] * ret_help["recall_valid_nonnovel"] /
max(1e-4, ret_help["precision_valid_nonnovel"] + ret_help["recall_valid_nonnovel"]),
"f1_nonvalid_novel": 2 * ret_help["precision_nonvalid_novel"] * ret_help["recall_nonvalid_novel"] /
max(1e-4, ret_help["precision_nonvalid_novel"] + ret_help["recall_nonvalid_novel"]),
"f1_nonvalid_nonnovel": 2 * ret_help["precision_nonvalid_nonnovel"] * ret_help["recall_nonvalid_nonnovel"] /
max(1e-4, ret_help["precision_nonvalid_nonnovel"] + ret_help["recall_nonvalid_nonnovel"])
})
ret.update({
"f1_val_macro": (ret["f1_validity"] + ret["f1_val_neg"])/2,
"f1_nov_macro": (ret["f1_novelty"] + ret["f1_nov_neg"])/2,
"f1_macro": (ret["f1_valid_novel"]+ret["f1_valid_nonnovel"]+ret["f1_nonvalid_novel"]+ret["f1_nonvalid_nonnovel"])/4
})
logger.info("Clean the metric-dict before returning: {}",
" / ".join(map(lambda key: "{}: {}".format(key, ret.pop(key)),
["approximately_hits_validity", "approximately_hits_novelty", "exact_hits_validity",
"exact_hits_novelty", "size"])))
return ret
# noinspection PyMethodMayBeStatic
class ValNovTrainer(Trainer):
def compute_loss(self, model: PreTrainedModel, inputs: Dict[str, torch.Tensor], return_outputs=False):
try:
validity = inputs.pop("validity")
novelty = inputs.pop("novelty")
weights = inputs.pop("weight")
logger.trace("The batch contain following validity-scores ({}), novelty-scores ({}) and weights ({})",
validity, novelty, weights)
outputs = model(**inputs)
if isinstance(outputs, ValNovOutput) and outputs.loss is not None:
logger.debug("The loss was already computed: {}", outputs.loss)
return (outputs.loss, outputs) if return_outputs else outputs.loss
if isinstance(outputs, ValNovOutput):
is_val = outputs.validity
is_nov = outputs.novelty
else:
logger.warning("The output of you model {} is a {}, bit should be a ValNovOutput",
model.name_or_path, type(outputs))
is_val = outputs[0] if isinstance(outputs, Tuple) and len(outputs) >= 2 else outputs
is_nov = outputs[1] if isinstance(outputs, Tuple) and len(outputs) >= 2 else outputs
loss = val_nov_loss(is_val=is_val, is_nov=is_nov,
should_val=validity, should_nov=novelty,
weights=weights)
return (loss, outputs) if return_outputs else loss
except KeyError:
logger.opt(exception=True).error("Something in your configuration / plugged model is false")
return (torch.zeros((0,), dtype=torch.float), model(**inputs)) if return_outputs \
else torch.zeros((0,), dtype=torch.float)
@dataclass
class ValNovOutput(SequenceClassifierOutput):
validity: torch.FloatTensor = None
novelty: torch.FloatTensor = None
class ValNovRegressor(torch.nn.Module):
def __init__(self, transformer: PreTrainedModel,
loss: Literal["ignore", "compute", "compute and reduce"] = "ignore"):
super(ValNovRegressor, self).__init__()
self.transformer = transformer
try:
self.regression_layer_validity = torch.nn.Linear(in_features=transformer.config.hidden_size, out_features=1)
self.regression_layer_novelty = torch.nn.Linear(in_features=transformer.config.hidden_size, out_features=1)
except AttributeError:
logger.opt(exception=True).warning("No hidden-size... please use a XXXForMaskedLM-Model!")
self.regression_layer_validity = torch.nn.LazyLinear(out_features=1)
self.regression_layer_novelty = torch.nn.LazyLinear(out_features=1)
self.sigmoid = torch.nn.Sigmoid()
if loss == "ignore":
logger.info("torch-Module without an additional loss computation during the forward-pass - "
"has to be done explicitly in the training loop!")
self.loss = loss
logger.success("Successfully created {}", self)
def forward(self, x: BatchEncoding) -> ValNovOutput:
transformer_cls: BaseModelOutput = self.transformer(input_ids=x["input_ids"],
attention_mask=x["attention_mask"],
token_type_ids=x["token_type_ids"],
return_dict=True)
cls_logits = transformer_cls.last_hidden_state[0]
validity_logits = self.regression_layer_validity(cls_logits)
novelty_logits = self.regression_layer_novelty(cls_logits)
return ValNovOutput(
logits=torch.stack([validity_logits, novelty_logits]),
loss=val_nov_loss(is_val=self.sigmoid(validity_logits),
is_nov=self.sigmoid(novelty_logits),
should_val=x["validity"],
should_nov=x["novelty"],
weights=x.get("weight", None),
reduce=self.loss == "compute and reduce"
) if self.loss != "ignore" and "validity" in x and "novelty" in x else None,
hidden_states=transformer_cls.hidden_states,
attentions=transformer_cls.attentions,
validity=self.sigmoid(validity_logits),
novelty=self.sigmoid(novelty_logits)
)
def __str__(self) -> str:
return "() --> ({} --> validity/ {} --> novelty)".format(self.transformer.name_or_path,
self.regression_layer_validity,
self.regression_layer_novelty)
class RobertaForValNovRegression(RobertaForSequenceClassification):
def __init__(self, *model_args, **model_kwargs):
config = RobertaForValNovRegression.get_config()
configs = [arg for arg in model_args if isinstance(arg, RobertaConfig)]
if len(configs) >= 1:
logger.warning("Found already {} config {}... extend it", len(configs), configs[0])
model_args = [arg for arg in model_args if not isinstance(arg, RobertaConfig)]
config = configs[0]
config.num_labels = 2
config.id2label = {
0: "validity",
1: "novelty"
}
config.return_dict = True
super().__init__(config=config, *model_args, **model_kwargs)
self.loss = "compute"
self.sigmoid = torch.nn.Sigmoid()
@classmethod
def get_config(cls) -> RobertaConfig:
config = RobertaConfig()
config.finetuning_task = "Validity-Novelty-Prediction"
config.num_labels = 2
config.id2label = {
0: "validity",
1: "novelty"
}
config.return_dict = True
return config
def forward(self, **kwargs):
logger.trace("Found {} forward-params", len(kwargs))
if "labels" in kwargs:
labels = kwargs.pop("labels")
logger.warning("Found a disturbing param in forward-function: labels ({})", labels)
if "return_dict" in kwargs:
return_dict = kwargs.pop("return_dict")
logger.warning("Found a disturbing param in forward-function: return_dict ({})", return_dict)
should_validity = None
if "validity" in kwargs:
should_validity = kwargs.pop("validity")
logger.trace("Found a target validity-vector: {}", should_validity)
should_novelty = None
if "novelty" in kwargs:
should_novelty = kwargs.pop("novelty")
logger.trace("Found a target novelty-vector: {}", should_novelty)
weights = None
if "weight" in kwargs:
weights = kwargs.pop("weight")
logger.trace("Found a sample-weights-vector: {}", weights)
out: SequenceClassifierOutput = super().forward(**kwargs)
is_validity = self.sigmoid(out.logits[:, 0])
is_novelty = self.sigmoid(out.logits[:, 1])
return ValNovOutput(
attentions=out.attentions,
hidden_states=out.hidden_states,
logits=out.logits,
loss=val_nov_loss(
is_val=is_validity,
is_nov=is_novelty,
should_val=should_validity,
should_nov=should_novelty,
weights=weights,
reduce=self.loss == "compute and reduce"
) if self.loss != "ignore" and should_validity is not None and should_novelty is not None else None,
validity=is_validity,
novelty=is_novelty
)