Upload HGTrainer.py
Browse files- HGTrainer.py +432 -0
HGTrainer.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Dict, Optional, Tuple, Literal
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import numpy
|
6 |
+
|
7 |
+
from transformers import Trainer, PreTrainedModel, RobertaForSequenceClassification, BatchEncoding, RobertaConfig, \
|
8 |
+
EvalPrediction
|
9 |
+
from transformers.modeling_outputs import SequenceClassifierOutput, BaseModelOutput
|
10 |
+
from loguru import logger
|
11 |
+
|
12 |
+
|
13 |
+
def val_nov_loss(is_val: torch.Tensor, should_val: torch.Tensor, is_nov: torch.Tensor, should_nov: torch.Tensor,
|
14 |
+
weights: Optional[torch.Tensor] = None, reduce: bool = True) -> torch.Tensor:
|
15 |
+
if weights is None:
|
16 |
+
weights = torch.ones_like(should_val)
|
17 |
+
logger.debug("No weights-vector - assume, all {} samples should count equally", weights.size())
|
18 |
+
|
19 |
+
loss_validity = torch.pow(is_val - torch.where(torch.isnan(should_val), is_val, should_val), 2)
|
20 |
+
loss_novelty = torch.pow(is_nov - torch.where(torch.isnan(should_nov), is_nov, should_nov), 2)
|
21 |
+
|
22 |
+
logger.trace("loss_validity: {} / loss_novelty: {}", loss_validity, loss_novelty)
|
23 |
+
|
24 |
+
loss = (.5 * (loss_validity * loss_novelty) + .5 * loss_validity + .5 * loss_novelty) * weights
|
25 |
+
|
26 |
+
return torch.mean(loss) if reduce else loss
|
27 |
+
|
28 |
+
|
29 |
+
def val_nov_metric(eval_data: EvalPrediction) -> Dict[str, float]:
|
30 |
+
if isinstance(eval_data.predictions, Tuple) and isinstance(eval_data.label_ids, Tuple) \
|
31 |
+
or min(len(eval_data.predictions), len(eval_data.label_ids)) >= 2:
|
32 |
+
logger.trace("Format is as processable ({}: {})", type(eval_data.predictions), len(eval_data.predictions))
|
33 |
+
if len(eval_data.predictions) != 2:
|
34 |
+
logger.debug("We expect 2 tuples, but get {}: {}", len(eval_data.predictions), eval_data.predictions)
|
35 |
+
|
36 |
+
is_validity = eval_data.predictions[-2]
|
37 |
+
should_validity = eval_data.label_ids[-2]
|
38 |
+
is_novelty = eval_data.predictions[-1]
|
39 |
+
should_novelty = eval_data.label_ids[-1]
|
40 |
+
|
41 |
+
return _val_nov_metric(is_validity=is_validity, should_validity=should_validity,
|
42 |
+
is_novelty=is_novelty, should_novelty=should_novelty)
|
43 |
+
else:
|
44 |
+
logger.warning("This metric can't return all metrics properly, "
|
45 |
+
"because validity and novelty are not distinguishable")
|
46 |
+
|
47 |
+
return {
|
48 |
+
"size": numpy.size(eval_data.label_ids),
|
49 |
+
"mse_validity": numpy.mean((eval_data.predictions-eval_data.label_ids) ** 2),
|
50 |
+
"mse_novelty": numpy.mean((eval_data.predictions-eval_data.label_ids) ** 2),
|
51 |
+
"error_validity": numpy.mean(numpy.abs(eval_data.predictions-eval_data.label_ids)),
|
52 |
+
"error_novelty": numpy.mean(numpy.abs(eval_data.predictions-eval_data.label_ids)),
|
53 |
+
"approximately_hits_validity": -1,
|
54 |
+
"approximately_hits_novelty": -1,
|
55 |
+
"exact_hits_validity": -1,
|
56 |
+
"exact_hits_novelty": -1,
|
57 |
+
"approximately_hits": numpy.count_nonzero(
|
58 |
+
numpy.where(numpy.abs(eval_data.predictions-eval_data.label_ids) < .2, 1, 0)
|
59 |
+
) / numpy.size(eval_data.predictions),
|
60 |
+
"exact_hits": numpy.count_nonzero(
|
61 |
+
numpy.where(numpy.abs(eval_data.predictions-eval_data.label_ids) < .05, 1, 0)
|
62 |
+
) / numpy.size(eval_data.predictions),
|
63 |
+
"accuracy_validity": -1,
|
64 |
+
"accuracy_novelty": -1,
|
65 |
+
"accuracy": -1,
|
66 |
+
"f1_validity": -1,
|
67 |
+
"f1_novelty": -1,
|
68 |
+
"f1_macro": -1,
|
69 |
+
"never_predicted_classes": 4
|
70 |
+
}
|
71 |
+
|
72 |
+
|
73 |
+
def _val_nov_metric(is_validity: numpy.ndarray, should_validity: numpy.ndarray,
|
74 |
+
is_novelty: numpy.ndarray, should_novelty: numpy.ndarray) -> Dict[str, float]:
|
75 |
+
ret = {
|
76 |
+
"size": numpy.size(is_validity),
|
77 |
+
"mse_validity": numpy.mean((is_validity - should_validity) ** 2),
|
78 |
+
"mse_novelty": numpy.mean((is_novelty - should_novelty) ** 2),
|
79 |
+
"error_validity": numpy.mean(numpy.abs(is_validity - should_validity)),
|
80 |
+
"error_novelty": numpy.mean(numpy.abs(is_novelty - should_novelty)),
|
81 |
+
"approximately_hits_validity": numpy.sum(
|
82 |
+
numpy.where(numpy.abs(is_validity - should_validity) < .2, 1, 0)) / numpy.size(is_validity),
|
83 |
+
"approximately_hits_novelty": numpy.sum(
|
84 |
+
numpy.where(numpy.abs(is_novelty - should_novelty) < .2, 1, 0)) / numpy.size(is_novelty),
|
85 |
+
"exact_hits_validity": numpy.sum(
|
86 |
+
numpy.where(numpy.abs(is_validity - should_validity) < .05, 1, 0)) / numpy.size(is_validity),
|
87 |
+
"exact_hits_novelty": numpy.sum(
|
88 |
+
numpy.where(numpy.abs(is_novelty - should_novelty) < .05, 1, 0)) / numpy.size(is_novelty),
|
89 |
+
"approximately_hits": numpy.sum(
|
90 |
+
numpy.where(numpy.abs(is_validity - should_validity) + numpy.abs(is_novelty - should_novelty) < .25, 1, 0)
|
91 |
+
) / numpy.size(is_validity),
|
92 |
+
"exact_hits": numpy.sum(
|
93 |
+
numpy.where(numpy.abs(is_validity - should_validity) + numpy.abs(is_novelty - should_novelty) < .05, 1, 0)
|
94 |
+
) / numpy.size(is_validity),
|
95 |
+
"accuracy_validity": numpy.sum(numpy.where(
|
96 |
+
numpy.any(numpy.stack([
|
97 |
+
numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5]), axis=0),
|
98 |
+
numpy.all(numpy.stack([is_validity < .5, should_validity < .5]), axis=0)
|
99 |
+
]), axis=0),
|
100 |
+
1, 0
|
101 |
+
)) / numpy.size(is_validity),
|
102 |
+
"accuracy_novelty": numpy.sum(numpy.where(
|
103 |
+
numpy.any(numpy.stack([
|
104 |
+
numpy.all(numpy.stack([is_novelty >= .5, should_novelty >= .5]), axis=0),
|
105 |
+
numpy.all(numpy.stack([is_novelty < .5, should_novelty < .5]), axis=0)
|
106 |
+
]), axis=0),
|
107 |
+
1, 0
|
108 |
+
)) / numpy.size(is_validity),
|
109 |
+
"accuracy": numpy.sum(numpy.where(
|
110 |
+
numpy.any(numpy.stack([
|
111 |
+
numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5, is_novelty >= .5, should_novelty >= .5]),
|
112 |
+
axis=0),
|
113 |
+
numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5, is_novelty < .5, should_novelty < .5]),
|
114 |
+
axis=0),
|
115 |
+
numpy.all(numpy.stack([is_validity < .5, should_validity < .5, is_novelty >= .5, should_novelty >= .5]),
|
116 |
+
axis=0),
|
117 |
+
numpy.all(numpy.stack([is_validity < .5, should_validity < .5, is_novelty < .5, should_novelty < .5]),
|
118 |
+
axis=0)
|
119 |
+
]), axis=0),
|
120 |
+
1, 0
|
121 |
+
)) / numpy.size(is_validity),
|
122 |
+
"never_predicted_classes": sum(
|
123 |
+
[int(numpy.all(numpy.abs(is_validity-validity) < .5) and numpy.all(numpy.abs(is_novelty-novelty) < .5))
|
124 |
+
for validity, novelty in [(1, 1), (1, 0), (0, 1), (0, 0)]]
|
125 |
+
)
|
126 |
+
}
|
127 |
+
|
128 |
+
ret_base_help = {
|
129 |
+
"true_positive_validity": numpy.sum(numpy.where(
|
130 |
+
numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5]), axis=0),
|
131 |
+
1, 0)),
|
132 |
+
"true_negative_validity": numpy.sum(numpy.where(
|
133 |
+
numpy.all(numpy.stack([is_validity < .5, should_validity < .5]), axis=0),
|
134 |
+
1, 0)),
|
135 |
+
"true_positive_novelty": numpy.sum(numpy.where(
|
136 |
+
numpy.all(numpy.stack([is_novelty >= .5, should_novelty >= .5]), axis=0),
|
137 |
+
1, 0)),
|
138 |
+
"true_negative_novelty": numpy.sum(numpy.where(
|
139 |
+
numpy.all(numpy.stack([is_novelty < .5, should_novelty < .5]), axis=0),
|
140 |
+
1, 0)),
|
141 |
+
"true_positive_valid_novel": numpy.sum(numpy.where(
|
142 |
+
numpy.all(numpy.stack([is_validity >= .5, is_novelty >= .5,
|
143 |
+
should_validity >= .5, should_novelty >= .5]), axis=0),
|
144 |
+
1, 0)),
|
145 |
+
"true_positive_nonvalid_novel": numpy.sum(numpy.where(
|
146 |
+
numpy.all(numpy.stack([is_validity < .5, is_novelty >= .5,
|
147 |
+
should_validity < .5, should_novelty >= .5]), axis=0),
|
148 |
+
1, 0)),
|
149 |
+
"true_positive_valid_nonnovel": numpy.sum(numpy.where(
|
150 |
+
numpy.all(numpy.stack([is_validity >= .5, is_novelty < .5,
|
151 |
+
should_validity >= .5, should_novelty < .5]), axis=0),
|
152 |
+
1, 0)),
|
153 |
+
"true_positive_nonvalid_nonnovel": numpy.sum(numpy.where(
|
154 |
+
numpy.all(numpy.stack([is_validity < .5, is_novelty < .5,
|
155 |
+
should_validity < .5, should_novelty < .5]), axis=0),
|
156 |
+
1, 0)),
|
157 |
+
"classified_positive_validity": numpy.sum(numpy.where(is_validity >= .5, 1, 0)),
|
158 |
+
"classified_negative_validity": numpy.sum(numpy.where(is_validity < .5, 1, 0)),
|
159 |
+
"classified_positive_novelty": numpy.sum(numpy.where(is_novelty >= .5, 1, 0)),
|
160 |
+
"classified_negative_novelty": numpy.sum(numpy.where(is_novelty < .5, 1, 0)),
|
161 |
+
"classified_positive_valid_novel": numpy.sum(numpy.where(
|
162 |
+
numpy.all(numpy.stack([is_validity >= .5, is_novelty >= .5]), axis=0),
|
163 |
+
1, 0)),
|
164 |
+
"classified_positive_nonvalid_novel": numpy.sum(numpy.where(
|
165 |
+
numpy.all(numpy.stack([is_validity < .5, is_novelty >= .5]), axis=0),
|
166 |
+
1, 0)),
|
167 |
+
"classified_positive_valid_nonnovel": numpy.sum(numpy.where(
|
168 |
+
numpy.all(numpy.stack([is_validity >= .5, is_novelty < .5]), axis=0),
|
169 |
+
1, 0)),
|
170 |
+
"classified_positive_nonvalid_nonnovel": numpy.sum(numpy.where(
|
171 |
+
numpy.all(numpy.stack([is_validity < .5, is_novelty < .5]), axis=0),
|
172 |
+
1, 0)),
|
173 |
+
"indeed_positive_validity": numpy.sum(numpy.where(should_validity >= .5, 1, 0)),
|
174 |
+
"indeed_negative_validity": numpy.sum(numpy.where(should_validity < .5, 1, 0)),
|
175 |
+
"indeed_positive_novelty": numpy.sum(numpy.where(should_novelty >= .5, 1, 0)),
|
176 |
+
"indeed_negative_novelty": numpy.sum(numpy.where(should_novelty < .5, 1, 0)),
|
177 |
+
"indeed_positive_valid_novel": numpy.sum(numpy.where(
|
178 |
+
numpy.all(numpy.stack([should_validity >= .5, should_novelty >= .5]), axis=0),
|
179 |
+
1, 0)),
|
180 |
+
"indeed_positive_nonvalid_novel": numpy.sum(numpy.where(
|
181 |
+
numpy.all(numpy.stack([should_validity < .5, should_novelty >= .5]), axis=0),
|
182 |
+
1, 0)),
|
183 |
+
"indeed_positive_valid_nonnovel": numpy.sum(numpy.where(
|
184 |
+
numpy.all(numpy.stack([should_validity >= .5, should_novelty < .5]), axis=0),
|
185 |
+
1, 0)),
|
186 |
+
"indeed_positive_nonvalid_nonnovel": numpy.sum(numpy.where(
|
187 |
+
numpy.all(numpy.stack([should_validity < .5, should_novelty < .5]), axis=0),
|
188 |
+
1, 0)),
|
189 |
+
}
|
190 |
+
|
191 |
+
ret_help = {
|
192 |
+
"precision_validity": ret_base_help["true_positive_validity"] /
|
193 |
+
max(1, ret_base_help["classified_positive_validity"]),
|
194 |
+
"precision_novelty": ret_base_help["true_positive_novelty"] /
|
195 |
+
max(1, ret_base_help["classified_positive_novelty"]),
|
196 |
+
"recall_validity": ret_base_help["true_positive_validity"] /
|
197 |
+
max(1, ret_base_help["indeed_positive_validity"]),
|
198 |
+
"recall_novelty": ret_base_help["true_positive_novelty"] /
|
199 |
+
max(1, ret_base_help["indeed_positive_novelty"]),
|
200 |
+
"precision_val_neg": ret_base_help["true_negative_validity"] /
|
201 |
+
max(1, ret_base_help["classified_negative_validity"]),
|
202 |
+
"precision_nov_neg": ret_base_help["true_negative_novelty"] /
|
203 |
+
max(1, ret_base_help["classified_negative_novelty"]),
|
204 |
+
"recall_val_neg": ret_base_help["true_negative_validity"] /
|
205 |
+
max(1, ret_base_help["indeed_negative_validity"]),
|
206 |
+
"recall_nov_neg": ret_base_help["true_negative_novelty"] /
|
207 |
+
max(1, ret_base_help["indeed_negative_novelty"]),
|
208 |
+
"precision_valid_novel": ret_base_help["true_positive_valid_novel"] /
|
209 |
+
max(1, ret_base_help["classified_positive_valid_novel"]),
|
210 |
+
"precision_valid_nonnovel": ret_base_help["true_positive_valid_nonnovel"] /
|
211 |
+
max(1, ret_base_help["classified_positive_valid_nonnovel"]),
|
212 |
+
"precision_nonvalid_novel": ret_base_help["true_positive_nonvalid_novel"] /
|
213 |
+
max(1, ret_base_help["classified_positive_nonvalid_novel"]),
|
214 |
+
"precision_nonvalid_nonnovel": ret_base_help["true_positive_nonvalid_nonnovel"] /
|
215 |
+
max(1, ret_base_help["classified_positive_nonvalid_nonnovel"]),
|
216 |
+
"recall_valid_novel": ret_base_help["true_positive_valid_novel"] /
|
217 |
+
max(1, ret_base_help["indeed_positive_valid_novel"]),
|
218 |
+
"recall_valid_nonnovel": ret_base_help["true_positive_valid_nonnovel"] /
|
219 |
+
max(1, ret_base_help["indeed_positive_valid_nonnovel"]),
|
220 |
+
"recall_nonvalid_novel": ret_base_help["true_positive_nonvalid_novel"] /
|
221 |
+
max(1, ret_base_help["indeed_positive_nonvalid_novel"]),
|
222 |
+
"recall_nonvalid_nonnovel": ret_base_help["true_positive_nonvalid_nonnovel"] /
|
223 |
+
max(1, ret_base_help["indeed_positive_nonvalid_nonnovel"])
|
224 |
+
}
|
225 |
+
|
226 |
+
ret.update({
|
227 |
+
"f1_validity": 2 * ret_help["precision_validity"] * ret_help["recall_validity"] /
|
228 |
+
max(1e-4, ret_help["precision_validity"] + ret_help["recall_validity"]),
|
229 |
+
"f1_novelty": 2 * ret_help["precision_novelty"] * ret_help["recall_novelty"] /
|
230 |
+
max(1e-4, ret_help["precision_novelty"] + ret_help["recall_novelty"]),
|
231 |
+
"f1_val_neg": 2 * ret_help["precision_val_neg"] * ret_help["recall_val_neg"] /
|
232 |
+
max(1e-4, ret_help["precision_val_neg"] + ret_help["recall_val_neg"]),
|
233 |
+
"f1_nov_neg": 2 * ret_help["precision_nov_neg"] * ret_help["recall_nov_neg"] /
|
234 |
+
max(1e-4, ret_help["precision_nov_neg"] + ret_help["recall_nov_neg"]),
|
235 |
+
"f1_valid_novel": 2 * ret_help["precision_valid_novel"] * ret_help["recall_valid_novel"] /
|
236 |
+
max(1e-4, ret_help["precision_valid_novel"] + ret_help["recall_valid_novel"]),
|
237 |
+
"f1_valid_nonnovel": 2 * ret_help["precision_valid_nonnovel"] * ret_help["recall_valid_nonnovel"] /
|
238 |
+
max(1e-4, ret_help["precision_valid_nonnovel"] + ret_help["recall_valid_nonnovel"]),
|
239 |
+
"f1_nonvalid_novel": 2 * ret_help["precision_nonvalid_novel"] * ret_help["recall_nonvalid_novel"] /
|
240 |
+
max(1e-4, ret_help["precision_nonvalid_novel"] + ret_help["recall_nonvalid_novel"]),
|
241 |
+
"f1_nonvalid_nonnovel": 2 * ret_help["precision_nonvalid_nonnovel"] * ret_help["recall_nonvalid_nonnovel"] /
|
242 |
+
max(1e-4, ret_help["precision_nonvalid_nonnovel"] + ret_help["recall_nonvalid_nonnovel"])
|
243 |
+
})
|
244 |
+
|
245 |
+
ret.update({
|
246 |
+
"f1_val_macro": (ret["f1_validity"] + ret["f1_val_neg"])/2,
|
247 |
+
"f1_nov_macro": (ret["f1_novelty"] + ret["f1_nov_neg"])/2,
|
248 |
+
"f1_macro": (ret["f1_valid_novel"]+ret["f1_valid_nonnovel"]+ret["f1_nonvalid_novel"]+ret["f1_nonvalid_nonnovel"])/4
|
249 |
+
})
|
250 |
+
|
251 |
+
logger.info("Clean the metric-dict before returning: {}",
|
252 |
+
" / ".join(map(lambda key: "{}: {}".format(key, ret.pop(key)),
|
253 |
+
["approximately_hits_validity", "approximately_hits_novelty", "exact_hits_validity",
|
254 |
+
"exact_hits_novelty", "size"])))
|
255 |
+
|
256 |
+
return ret
|
257 |
+
|
258 |
+
|
259 |
+
# noinspection PyMethodMayBeStatic
|
260 |
+
class ValNovTrainer(Trainer):
|
261 |
+
def compute_loss(self, model: PreTrainedModel, inputs: Dict[str, torch.Tensor], return_outputs=False):
|
262 |
+
try:
|
263 |
+
validity = inputs.pop("validity")
|
264 |
+
novelty = inputs.pop("novelty")
|
265 |
+
weights = inputs.pop("weight")
|
266 |
+
logger.trace("The batch contain following validity-scores ({}), novelty-scores ({}) and weights ({})",
|
267 |
+
validity, novelty, weights)
|
268 |
+
|
269 |
+
outputs = model(**inputs)
|
270 |
+
|
271 |
+
if isinstance(outputs, ValNovOutput) and outputs.loss is not None:
|
272 |
+
logger.debug("The loss was already computed: {}", outputs.loss)
|
273 |
+
return (outputs.loss, outputs) if return_outputs else outputs.loss
|
274 |
+
|
275 |
+
if isinstance(outputs, ValNovOutput):
|
276 |
+
is_val = outputs.validity
|
277 |
+
is_nov = outputs.novelty
|
278 |
+
else:
|
279 |
+
logger.warning("The output of you model {} is a {}, bit should be a ValNovOutput",
|
280 |
+
model.name_or_path, type(outputs))
|
281 |
+
is_val = outputs[0] if isinstance(outputs, Tuple) and len(outputs) >= 2 else outputs
|
282 |
+
is_nov = outputs[1] if isinstance(outputs, Tuple) and len(outputs) >= 2 else outputs
|
283 |
+
|
284 |
+
loss = val_nov_loss(is_val=is_val, is_nov=is_nov,
|
285 |
+
should_val=validity, should_nov=novelty,
|
286 |
+
weights=weights)
|
287 |
+
|
288 |
+
return (loss, outputs) if return_outputs else loss
|
289 |
+
except KeyError:
|
290 |
+
logger.opt(exception=True).error("Something in your configuration / plugged model is false")
|
291 |
+
|
292 |
+
return (torch.zeros((0,), dtype=torch.float), model(**inputs)) if return_outputs \
|
293 |
+
else torch.zeros((0,), dtype=torch.float)
|
294 |
+
|
295 |
+
|
296 |
+
@dataclass
|
297 |
+
class ValNovOutput(SequenceClassifierOutput):
|
298 |
+
validity: torch.FloatTensor = None
|
299 |
+
novelty: torch.FloatTensor = None
|
300 |
+
|
301 |
+
|
302 |
+
class ValNovRegressor(torch.nn.Module):
|
303 |
+
def __init__(self, transformer: PreTrainedModel,
|
304 |
+
loss: Literal["ignore", "compute", "compute and reduce"] = "ignore"):
|
305 |
+
super(ValNovRegressor, self).__init__()
|
306 |
+
|
307 |
+
self.transformer = transformer
|
308 |
+
try:
|
309 |
+
self.regression_layer_validity = torch.nn.Linear(in_features=transformer.config.hidden_size, out_features=1)
|
310 |
+
self.regression_layer_novelty = torch.nn.Linear(in_features=transformer.config.hidden_size, out_features=1)
|
311 |
+
except AttributeError:
|
312 |
+
logger.opt(exception=True).warning("No hidden-size... please use a XXXForMaskedLM-Model!")
|
313 |
+
self.regression_layer_validity = torch.nn.LazyLinear(out_features=1)
|
314 |
+
self.regression_layer_novelty = torch.nn.LazyLinear(out_features=1)
|
315 |
+
|
316 |
+
self.sigmoid = torch.nn.Sigmoid()
|
317 |
+
if loss == "ignore":
|
318 |
+
logger.info("torch-Module without an additional loss computation during the forward-pass - "
|
319 |
+
"has to be done explicitly in the training loop!")
|
320 |
+
self.loss = loss
|
321 |
+
|
322 |
+
logger.success("Successfully created {}", self)
|
323 |
+
|
324 |
+
def forward(self, x: BatchEncoding) -> ValNovOutput:
|
325 |
+
transformer_cls: BaseModelOutput = self.transformer(input_ids=x["input_ids"],
|
326 |
+
attention_mask=x["attention_mask"],
|
327 |
+
token_type_ids=x["token_type_ids"],
|
328 |
+
return_dict=True)
|
329 |
+
|
330 |
+
cls_logits = transformer_cls.last_hidden_state[0]
|
331 |
+
|
332 |
+
validity_logits = self.regression_layer_validity(cls_logits)
|
333 |
+
novelty_logits = self.regression_layer_novelty(cls_logits)
|
334 |
+
|
335 |
+
return ValNovOutput(
|
336 |
+
logits=torch.stack([validity_logits, novelty_logits]),
|
337 |
+
loss=val_nov_loss(is_val=self.sigmoid(validity_logits),
|
338 |
+
is_nov=self.sigmoid(novelty_logits),
|
339 |
+
should_val=x["validity"],
|
340 |
+
should_nov=x["novelty"],
|
341 |
+
weights=x.get("weight", None),
|
342 |
+
reduce=self.loss == "compute and reduce"
|
343 |
+
) if self.loss != "ignore" and "validity" in x and "novelty" in x else None,
|
344 |
+
hidden_states=transformer_cls.hidden_states,
|
345 |
+
attentions=transformer_cls.attentions,
|
346 |
+
validity=self.sigmoid(validity_logits),
|
347 |
+
novelty=self.sigmoid(novelty_logits)
|
348 |
+
)
|
349 |
+
|
350 |
+
def __str__(self) -> str:
|
351 |
+
return "() --> ({} --> validity/ {} --> novelty)".format(self.transformer.name_or_path,
|
352 |
+
self.regression_layer_validity,
|
353 |
+
self.regression_layer_novelty)
|
354 |
+
|
355 |
+
|
356 |
+
class RobertaForValNovRegression(RobertaForSequenceClassification):
|
357 |
+
def __init__(self, *model_args, **model_kwargs):
|
358 |
+
config = RobertaForValNovRegression.get_config()
|
359 |
+
|
360 |
+
configs = [arg for arg in model_args if isinstance(arg, RobertaConfig)]
|
361 |
+
if len(configs) >= 1:
|
362 |
+
logger.warning("Found already {} config {}... extend it", len(configs), configs[0])
|
363 |
+
model_args = [arg for arg in model_args if not isinstance(arg, RobertaConfig)]
|
364 |
+
config = configs[0]
|
365 |
+
config.num_labels = 2
|
366 |
+
config.id2label = {
|
367 |
+
0: "validity",
|
368 |
+
1: "novelty"
|
369 |
+
}
|
370 |
+
config.return_dict = True
|
371 |
+
|
372 |
+
super().__init__(config=config, *model_args, **model_kwargs)
|
373 |
+
|
374 |
+
self.loss = "compute"
|
375 |
+
self.sigmoid = torch.nn.Sigmoid()
|
376 |
+
|
377 |
+
@classmethod
|
378 |
+
def get_config(cls) -> RobertaConfig:
|
379 |
+
config = RobertaConfig()
|
380 |
+
config.finetuning_task = "Validity-Novelty-Prediction"
|
381 |
+
config.num_labels = 2
|
382 |
+
config.id2label = {
|
383 |
+
0: "validity",
|
384 |
+
1: "novelty"
|
385 |
+
}
|
386 |
+
config.return_dict = True
|
387 |
+
|
388 |
+
return config
|
389 |
+
|
390 |
+
def forward(self, **kwargs):
|
391 |
+
logger.trace("Found {} forward-params", len(kwargs))
|
392 |
+
if "labels" in kwargs:
|
393 |
+
labels = kwargs.pop("labels")
|
394 |
+
logger.warning("Found a disturbing param in forward-function: labels ({})", labels)
|
395 |
+
if "return_dict" in kwargs:
|
396 |
+
return_dict = kwargs.pop("return_dict")
|
397 |
+
logger.warning("Found a disturbing param in forward-function: return_dict ({})", return_dict)
|
398 |
+
|
399 |
+
should_validity = None
|
400 |
+
if "validity" in kwargs:
|
401 |
+
should_validity = kwargs.pop("validity")
|
402 |
+
logger.trace("Found a target validity-vector: {}", should_validity)
|
403 |
+
|
404 |
+
should_novelty = None
|
405 |
+
if "novelty" in kwargs:
|
406 |
+
should_novelty = kwargs.pop("novelty")
|
407 |
+
logger.trace("Found a target novelty-vector: {}", should_novelty)
|
408 |
+
|
409 |
+
weights = None
|
410 |
+
if "weight" in kwargs:
|
411 |
+
weights = kwargs.pop("weight")
|
412 |
+
logger.trace("Found a sample-weights-vector: {}", weights)
|
413 |
+
|
414 |
+
out: SequenceClassifierOutput = super().forward(**kwargs)
|
415 |
+
is_validity = self.sigmoid(out.logits[:, 0])
|
416 |
+
is_novelty = self.sigmoid(out.logits[:, 1])
|
417 |
+
|
418 |
+
return ValNovOutput(
|
419 |
+
attentions=out.attentions,
|
420 |
+
hidden_states=out.hidden_states,
|
421 |
+
logits=out.logits,
|
422 |
+
loss=val_nov_loss(
|
423 |
+
is_val=is_validity,
|
424 |
+
is_nov=is_novelty,
|
425 |
+
should_val=should_validity,
|
426 |
+
should_nov=should_novelty,
|
427 |
+
weights=weights,
|
428 |
+
reduce=self.loss == "compute and reduce"
|
429 |
+
) if self.loss != "ignore" and should_validity is not None and should_novelty is not None else None,
|
430 |
+
validity=is_validity,
|
431 |
+
novelty=is_novelty
|
432 |
+
)
|