Spaces:
Sleeping
Sleeping
Data Organization
We recommend follow THuman4.0 dataset to organize your own data as shown below:
data_dir
├── images
| └── cam00
│ └── cam01
├── masks
│ └── cam00
│ └── cam01
├── calibration.json
├── smpl_params.npz
Preprocessing
- (Optional) Reconstruct a template if the character is wearing loose clothes.
- Install additional libs.
cd ./utils/posevocab_custom_ops
python setup.py install
cd ../..
cd ./utils/root_finding
python setup.py install
cd ../..
- Generate a canonical LBS weight volume.
- For Windows: Download AdaptiveSolvers.x64.zip and extract
PointInterpolant.exe
to./bins
- For Linux:
- Clone Adaptive Multigrid Solvers (Version 16.04) to directory of your choice
cd path/to/cloned/repo
make pointinterpolant
- The resulting executable file is at
path/to/cloned/repo/Bin/Linux/PointInterpolant
. Copy it to./bins
(you may need to domkdir ./bins
beforehand) - Go to
./gen_data/gen_weight_volume.py line 115
, changesolve(smpl_model.lbs_weights.shape[-1], ".\\bins\\PointInterpolant.exe")
tosolve(smpl_model.lbs_weights.shape[-1], "./bins/PointInterpolant")
. (This is the resulting executable file we previously made.)
- For Windows: Download AdaptiveSolvers.x64.zip and extract
python -m gen_data.gen_weight_volume -c configs/***/template.yaml
- Run the following script to reconstruct a template.
python main_template.py -c configs/***/template.yaml
- Generate position maps.
python -m gen_data.gen_pos_maps -c configs/***/avatar.yaml