Diffsplat / extensions /diffusers_diffsplat /pipelines /pipeline_mv_pixart_alpha.py
paulpanwang's picture
Upload folder using huggingface_hub
476e0f0 verified
raw
history blame
24.8 kB
from PIL.Image import Image as PILImage
from torch import Tensor
import PIL.Image
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from einops import rearrange, repeat
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import *
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import *
# Copied from https://github.com/camenduru/GRM/blob/master/third_party/generative_models/instant3d.py
def build_gaussians(H: int, W: int, std: float, bg: float = 0.) -> Tensor:
assert H == W # TODO: support non-square latents
x_vals = torch.arange(W)
y_vals = torch.arange(H)
x_vals, y_vals = torch.meshgrid(x_vals, y_vals, indexing="ij")
x_vals = x_vals.unsqueeze(0).unsqueeze(0)
y_vals = y_vals.unsqueeze(0).unsqueeze(0)
center_x, center_y = W//2., H//2.
gaussian = torch.exp(-((x_vals - center_x) ** 2 + (y_vals - center_y) ** 2) / (2 * (std * H) ** 2)) # cf. Instant3D A.5
gaussian = gaussian / gaussian.max()
gaussian = (gaussian + bg).clamp(0., 1.) # gray background for `bg` > 0.
gaussian = gaussian.repeat(1, 3, 1, 1)
gaussian = 1. - gaussian # (1, 3, H, W) in [0, 1]
gaussian = torch.cat([gaussian, gaussian], dim=-1)
gaussian = torch.cat([gaussian, gaussian], dim=-2) # (1, 3, 2H, 2W)
gaussians = F.interpolate(gaussian, (H, W), mode="bilinear", align_corners=False)
gaussians = gaussians * 2. - 1. # (1, 3, H, W) in [-1, 1]
return gaussians
# Copied from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion
def _append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline
class PixArtAlphaMVPipeline(PixArtAlphaPipeline):
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps_img2img(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
def prepare_latents_img2img(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if image.shape[1] == 4:
init_latents = image
else:
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
elif isinstance(generator, list):
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
)
init_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
init_latents = self.vae.config.scaling_factor * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
def prepare_image_latents(self, image, device, num_images_per_prompt, do_classifier_free_guidance):
dtype = next(self.vae.parameters()).dtype
assert isinstance(image, Tensor)
assert image.ndim == 5 and image.shape[2] == 3
V_cond = image.shape[1]
image = rearrange(image, "b v c h w -> (b v) c h w")
# VAE latent
image = image.to(device).to(dtype) # not resize like CLIP preprocessing
image = image * 2. - 1.
image_latents = self.vae.encode(image).latent_dist.mode() * self.vae.config.scaling_factor
image_latents = rearrange(image_latents, "(b v) c h w -> b v c h w", v=V_cond)
# duplicate image latents for each generation per prompt, using mps friendly method
image_latents = image_latents.unsqueeze(1)
bs_latent, _, v, c, h, w = image_latents.shape
image_latents = image_latents.repeat(1, num_images_per_prompt, 1, 1, 1, 1)
image_latents = image_latents.view(bs_latent * num_images_per_prompt, v, c, h, w)
if do_classifier_free_guidance:
negative_latents = torch.zeros_like(image_latents)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_latents = torch.cat([negative_latents, image_latents])
return image_latents
def prepare_plucker(self, plucker, num_images_per_prompt, do_classifier_free_guidance):
plucker = plucker.to(dtype=self.transformer.dtype, device=self.transformer.device)
# duplicate plucker embeddings for each generation per prompt, using mps friendly method
plucker = plucker.unsqueeze(1)
bs, _, c, h, w = plucker.shape
plucker = plucker.repeat(1, num_images_per_prompt, 1, 1, 1)
plucker = plucker.view(bs * num_images_per_prompt, c, h, w)
if do_classifier_free_guidance:
plucker = torch.cat([plucker]*2, dim=0)
return plucker
@torch.no_grad()
def __call__(
self,
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor] = None,
prompt: Union[str, List[str]] = None,
num_views: int = 4,
plucker: Optional[torch.FloatTensor] = None,
triangle_cfg_scaling: bool = False,
min_guidance_scale: float = 1.0,
max_guidance_scale: float = 3.0,
init_std: Optional[float] = 0.,
init_noise_strength: Optional[float] = 1.,
init_bg: Optional[float] = 0.,
negative_prompt: Optional[str] = None,
num_inference_steps: int = 20,
timesteps: List[int] = None,
sigmas: List[float] = None,
guidance_scale: float = 4.5,
num_images_per_prompt: Optional[int] = 1,
height: Optional[int] = None,
width: Optional[int] = None,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
callback_steps: int = 1,
clean_caption: bool = True,
use_resolution_binning: bool = False, # `True` for original PixArt
max_sequence_length: int = 120,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
if "mask_feature" in kwargs:
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
# 1. Check inputs. Raise error if not correct
height = height or self.transformer.config.sample_size * self.vae_scale_factor
width = width or self.transformer.config.sample_size * self.vae_scale_factor
if use_resolution_binning:
if self.transformer.config.sample_size == 128:
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
elif self.transformer.config.sample_size == 64:
aspect_ratio_bin = ASPECT_RATIO_512_BIN
elif self.transformer.config.sample_size == 32:
aspect_ratio_bin = ASPECT_RATIO_256_BIN
else:
raise ValueError("Invalid sample size")
orig_height, orig_width = height, width
height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
self.check_inputs(
prompt,
height,
width,
negative_prompt,
callback_steps,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
)
V_cond = 0
if image is not None:
assert image.ndim == 5 # (B, V_cond, 3, H, W)
V_cond = image.shape[1]
cross_attention_kwargs = {"num_views": num_views + (V_cond if self.transformer.config.view_concat_condition else 0)}
# 2. Default height and width to transformer
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = (guidance_scale if not triangle_cfg_scaling else max_guidance_scale) > 1.0
# 3. Encode input prompt
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt,
do_classifier_free_guidance,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
clean_caption=clean_caption,
max_sequence_length=max_sequence_length,
)
prompt_embeds = repeat(prompt_embeds, "b n d -> (b v) n d", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
prompt_attention_mask = repeat(prompt_attention_mask, "b n -> (b v) n", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
if do_classifier_free_guidance:
negative_prompt_embeds = repeat(negative_prompt_embeds, "b n d -> (b v) n d", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
negative_prompt_attention_mask = repeat(negative_prompt_attention_mask, "b n -> (b v) n", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# 3.1 Prepare input image latents
if self.transformer.config.view_concat_condition:
if image is not None:
image_latents = self.prepare_image_latents(image, device, num_images_per_prompt, do_classifier_free_guidance)
else:
image_latents = torch.zeros(
(
batch_size * num_images_per_prompt,
self.transformer.config.out_channels // 2, # `num_channels_latents`; self.transformer.config.in_channels
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
),
dtype=prompt_embeds.dtype,
device=device,
)
if V_cond > 0:
image_latents = image_latents.unsqueeze(1).repeat(1, V_cond, 1, 1, 1)
if do_classifier_free_guidance:
image_latents = torch.cat([image_latents] * 2, dim=0)
# 3.2 Prepare Plucker embeddings
if plucker is not None:
assert plucker.shape[0] == batch_size * (num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
plucker = self.prepare_plucker(plucker, num_images_per_prompt, do_classifier_free_guidance)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
)
# 5. Prepare latents.
latent_channels = self.transformer.config.out_channels // 2 # self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt * num_views,
latent_channels,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 5.1 Gaussian blobs initialization; cf. Instant3D
if init_std > 0. and init_noise_strength < 1.:
row = int(num_views**0.5)
col = num_views - row
init_image = build_gaussians(row * height, col * width, init_std, init_bg).to(device=device, dtype=latents.dtype)
init_image = rearrange(init_image, "b d (r h) (c w) -> (b r c) d h w", r=row, c=col)
timesteps, num_inference_steps = self.get_timesteps_img2img(num_inference_steps, init_noise_strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
latents = self.prepare_latents_img2img(
init_image,
latent_timestep,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
)
# 5.2 Prepare guidance scale
if triangle_cfg_scaling:
# Triangle CFG scaling; the first view is input condition
guidance_scale = torch.cat([
torch.linspace(min_guidance_scale, max_guidance_scale, num_views//2 + 1).unsqueeze(0),
torch.linspace(max_guidance_scale, min_guidance_scale, num_views - (num_views//2 + 1) + 2)[1:-1].unsqueeze(0)
], dim=-1)
guidance_scale = guidance_scale.to(device, latents.dtype)
guidance_scale = guidance_scale.repeat(batch_size * num_images_per_prompt, 1)
guidance_scale = _append_dims(guidance_scale, latents.unsqueeze(1).ndim) # (B, V, 1, 1, 1)
guidance_scale = rearrange(guidance_scale, "b v c h w -> (b v) c h w")
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 6.1 Prepare micro-conditions.
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
if self.transformer.config.sample_size == 128:
resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1)
aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1)
resolution = resolution.to(dtype=prompt_embeds.dtype, device=device)
aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device)
if do_classifier_free_guidance:
resolution = torch.cat([resolution, resolution], dim=0)
aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0)
added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}
# 7. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# Concatenate input latents with others
latent_model_input = rearrange(latent_model_input, "(b v) c h w -> b v c h w", v=num_views)
if self.transformer.config.view_concat_condition:
latent_model_input = torch.cat([image_latents, latent_model_input], dim=1) # (B, V_in+V_cond, 4, H', W')
if self.transformer.config.input_concat_plucker:
plucker = F.interpolate(plucker, size=latent_model_input.shape[-2:], mode="bilinear", align_corners=False)
plucker = rearrange(plucker, "(b v) c h w -> b v c h w", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
latent_model_input = torch.cat([latent_model_input, plucker], dim=2) # (B, V_in(+V_cond), 4+6, H', W')
plucker = rearrange(plucker, "b v c h w -> (b v) c h w")
if self.transformer.config.input_concat_binary_mask:
if self.transformer.config.view_concat_condition:
latent_model_input = torch.cat([
torch.cat([latent_model_input[:, :V_cond, ...], torch.zeros_like(latent_model_input[:, :V_cond, 0:1, ...])], dim=2),
torch.cat([latent_model_input[:, V_cond:, ...], torch.ones_like(latent_model_input[:, V_cond:, 0:1, ...])], dim=2),
], dim=1) # (B, V_in+V_cond, 4+6+1, H', W')
else:
latent_model_input = torch.cat([
torch.cat([latent_model_input, torch.ones_like(latent_model_input[:, :, 0:1, ...])], dim=2),
], dim=1) # (B, V_in, 4+6+1, H', W')
latent_model_input = rearrange(latent_model_input, "b v c h w -> (b v) c h w")
current_timestep = t
if not torch.is_tensor(current_timestep):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = latent_model_input.device.type == "mps"
if isinstance(current_timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
elif len(current_timestep.shape) == 0:
current_timestep = current_timestep[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
current_timestep = current_timestep.expand(latent_model_input.shape[0])
# predict noise model_output
noise_pred = self.transformer(
latent_model_input,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
timestep=current_timestep,
added_cond_kwargs=added_cond_kwargs,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# Only keep the noise prediction for the latents
if self.transformer.config.view_concat_condition:
noise_pred = rearrange(noise_pred, "(b v) c h w -> b v c h w", v=num_views+V_cond)
noise_pred = rearrange(noise_pred[:, V_cond:, ...], "b v c h w -> (b v) c h w")
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
noise_pred = noise_pred.chunk(2, dim=1)[0]
else:
noise_pred = noise_pred
# compute previous image: x_t -> x_t-1
if num_inference_steps == 1:
# For DMD one step sampling: https://arxiv.org/abs/2311.18828
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample
else:
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
if use_resolution_binning:
image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
else:
image = latents
if not output_type == "latent":
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)