Drumwave / app.py
patchbanks's picture
Update app.py
7d3738d verified
import os
import pickle
import torch
import random
import subprocess
import re
import pretty_midi
import gradio as gr
from contextlib import nullcontext
from model import GPTConfig, GPT
from pedalboard import Pedalboard, Reverb, Compressor, Gain, Limiter
from pedalboard.io import AudioFile
import gradio as gr
in_space = os.getenv("SYSTEM") == "spaces"
temp_dir = 'temp'
os.makedirs(temp_dir, exist_ok=True)
init_from = 'resume'
out_dir = 'checkpoints'
ckpt_load = 'model.pt'
start = "000000000000\n"
num_samples = 1
max_new_tokens = 384
seed = random.randint(1, 100000)
torch.manual_seed(seed)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
compile = False
exec(open('configurator.py').read())
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device_type = 'cpu' if 'cuda' in device else 'cpu'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
if init_from == 'resume':
ckpt_path = os.path.join(out_dir, ckpt_load)
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
elif init_from.startswith('gpt2'):
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
model.eval()
model.to(device)
if compile:
model = torch.compile(model)
tokenizer = re.compile(r'000000000000|\d{2}|\n')
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
stoi = meta.get('stoi', None)
itos = meta.get('itos', None)
def encode(text):
matches = tokenizer.findall(text)
return [stoi[c] for c in matches]
def decode(encoded):
return ''.join([itos[i] for i in encoded])
def clear_midi(dir):
for file in os.listdir(dir):
if file.endswith('.mid'):
os.remove(os.path.join(dir, file))
clear_midi(temp_dir)
def generate_midi(temperature, top_k):
start_ids = encode(start)
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
midi_events = []
seq_count = 0
with torch.no_grad():
for _ in range(num_samples):
sequence = []
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
tkn_seq = decode(y[0].tolist())
lines = tkn_seq.splitlines()
for event in lines:
if event.startswith(start.strip()):
if sequence:
midi_events.append(sequence)
sequence = []
seq_count += 1
elif event.strip() == "":
continue
else:
try:
p = int(event[0:2])
v = int(event[2:4])
s = int(event[4:8])
e = int(event[8:12])
except ValueError:
p, v, s, e = 0, 0, 0, 0
sequence.append({'file_name': f'nanompc_{seq_count:02d}', 'pitch': p, 'velocity': v, 'start': s, 'end': e})
if sequence:
midi_events.append(sequence)
round_bars = []
for sequence in midi_events:
filtered_sequence = []
for event in sequence:
if event['start'] < 768 and event['end'] <= 768:
filtered_sequence.append(event)
if filtered_sequence:
round_bars.append(filtered_sequence)
midi_events = round_bars
return midi_events
def write_midi(midi_events, bpm):
midi_data = pretty_midi.PrettyMIDI(initial_tempo=bpm, resolution=96)
midi_data.time_signature_changes.append(pretty_midi.containers.TimeSignature(4, 4, 0))
instrument = pretty_midi.Instrument(0)
midi_data.instruments.append(instrument)
for sequence in midi_events:
for event in sequence:
pitch = event['pitch']
velocity = event['velocity']
start = midi_data.tick_to_time(event['start'])
end = midi_data.tick_to_time(event['end'])
note = pretty_midi.Note(pitch=pitch, velocity=velocity, start=start, end=end)
instrument.notes.append(note)
midi_path = os.path.join(temp_dir, 'output.mid')
midi_data.write(midi_path)
print(f"Generated: {midi_path}")
def render_wav(midi_file, uploaded_sf2=None):
sf2_dir = 'sf2_kits'
audio_format = 's16'
sample_rate = '44100'
gain = '2.0'
if uploaded_sf2:
sf2_file = uploaded_sf2
else:
sf2_files = [f for f in os.listdir(sf2_dir) if f.endswith('.sf2')]
if not sf2_files:
raise ValueError("No SoundFont (.sf2) file found in directory.")
sf2_file = os.path.join(sf2_dir, random.choice(sf2_files))
print(f"Using SoundFont: {sf2_file}")
output_wav = os.path.join(temp_dir, 'output.wav')
with open(os.devnull, 'w') as devnull:
command = [
'fluidsynth', '-ni', sf2_file, midi_file, '-F', output_wav, '-r', str(sample_rate),
'-o', f'audio.file.format={audio_format}', '-g', str(gain)
]
subprocess.call(command, stdout=devnull, stderr=devnull)
return output_wav
def generate_and_return_files(bpm, temperature, top_k, uploaded_sf2=None):
midi_events = generate_midi(temperature, top_k)
if not midi_events:
return "Error generating MIDI.", None, None
write_midi(midi_events, bpm)
midi_file = os.path.join(temp_dir, 'output.mid')
wav_raw = render_wav(midi_file, uploaded_sf2)
wav_fx = os.path.join(temp_dir, 'output_fx.wav')
sfx_settings = [
{
'board': Pedalboard([
Reverb(room_size=0.01, wet_level=random.uniform(0.005, 0.01), dry_level=0.75, width=1.0),
Compressor(threshold_db=-3.0, ratio=8.0, attack_ms=0.0, release_ms=300.0),
])
}
]
for setting in sfx_settings:
board = setting['board']
with AudioFile(wav_raw) as f:
with AudioFile(wav_fx, 'w', f.samplerate, f.num_channels) as o:
while f.tell() < f.frames:
chunk = f.read(int(f.samplerate))
effected = board(chunk, f.samplerate, reset=False)
o.write(effected)
return midi_file, wav_fx
custom_css = """
#generate-btn {
background-color: #6366f1 !important;
color: white !important;
border: none !important;
font-size: 16px;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
}
#generate-btn:hover {
background-color: #4f51c5 !important;
}
"""
with gr.Blocks(css=custom_css, theme="soft") as iface:
gr.Markdown("<h1 style='font-weight: bold; text-align: center;'>nanoMPC - AI Midi Drum Sequencer</h1>")
gr.Markdown("<p style='text-align:center;'>The Drumwave model generates retro drum machine beats.</p>")
with gr.Row():
with gr.Column(scale=1):
bpm = gr.Slider(minimum=50, maximum=200, step=1, value=120, label="BPM")
temperature = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature")
top_k = gr.Slider(minimum=4, maximum=256, step=1, value=128, label="Top-k")
soundfont = gr.File(label="Optional: Upload SoundFont (preset=0, bank=0)")
with gr.Column(scale=1):
midi_file = gr.File(label="MIDI File Output")
audio_file = gr.Audio(label="Generated Audio Output", type="filepath")
generate_button = gr.Button("Generate", elem_id="generate-btn")
generate_button.click(
fn=generate_and_return_files,
inputs=[bpm, temperature, top_k, soundfont],
outputs=[midi_file, audio_file]
)
iface.launch(share=True)