Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import logging | |
import math | |
import gradio as gr | |
from PIL import Image | |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline | |
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref | |
from src.unet_hacked_tryon import UNet2DConditionModel | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPVisionModelWithProjection, | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
) | |
from diffusers import DDPMScheduler,AutoencoderKL | |
from typing import List | |
import torch | |
import os | |
from transformers import AutoTokenizer | |
import numpy as np | |
from utils_mask import get_mask_location | |
from torchvision import transforms | |
import apply_net | |
from preprocess.humanparsing.run_parsing import Parsing | |
from preprocess.openpose.run_openpose import OpenPose | |
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation | |
from torchvision.transforms.functional import to_pil_image | |
from src.background_processor import BackgroundProcessor | |
def pil_to_binary_mask(pil_image, threshold=0): | |
np_image = np.array(pil_image) | |
grayscale_image = Image.fromarray(np_image).convert("L") | |
binary_mask = np.array(grayscale_image) > threshold | |
mask = np.zeros(binary_mask.shape, dtype=np.uint8) | |
for i in range(binary_mask.shape[0]): | |
for j in range(binary_mask.shape[1]): | |
if binary_mask[i,j] == True : | |
mask[i,j] = 1 | |
mask = (mask*255).astype(np.uint8) | |
output_mask = Image.fromarray(mask) | |
return output_mask | |
base_path = 'yisol/IDM-VTON' | |
example_path = os.path.join(os.path.dirname(__file__), 'example') | |
unet = UNet2DConditionModel.from_pretrained( | |
base_path, | |
subfolder="unet", | |
torch_dtype=torch.float16, | |
) | |
unet.requires_grad_(False) | |
tokenizer_one = AutoTokenizer.from_pretrained( | |
base_path, | |
subfolder="tokenizer", | |
revision=None, | |
use_fast=False, | |
) | |
tokenizer_two = AutoTokenizer.from_pretrained( | |
base_path, | |
subfolder="tokenizer_2", | |
revision=None, | |
use_fast=False, | |
) | |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") | |
text_encoder_one = CLIPTextModel.from_pretrained( | |
base_path, | |
subfolder="text_encoder", | |
torch_dtype=torch.float16, | |
) | |
text_encoder_two = CLIPTextModelWithProjection.from_pretrained( | |
base_path, | |
subfolder="text_encoder_2", | |
torch_dtype=torch.float16, | |
) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
base_path, | |
subfolder="image_encoder", | |
torch_dtype=torch.float16, | |
) | |
vae = AutoencoderKL.from_pretrained(base_path, | |
subfolder="vae", | |
torch_dtype=torch.float16, | |
) | |
# "stabilityai/stable-diffusion-xl-base-1.0", | |
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( | |
base_path, | |
subfolder="unet_encoder", | |
torch_dtype=torch.float16, | |
) | |
parsing_model = Parsing(0) | |
openpose_model = OpenPose(0) | |
UNet_Encoder.requires_grad_(False) | |
image_encoder.requires_grad_(False) | |
vae.requires_grad_(False) | |
unet.requires_grad_(False) | |
text_encoder_one.requires_grad_(False) | |
text_encoder_two.requires_grad_(False) | |
tensor_transfrom = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
pipe = TryonPipeline.from_pretrained( | |
base_path, | |
unet=unet, | |
vae=vae, | |
feature_extractor= CLIPImageProcessor(), | |
text_encoder = text_encoder_one, | |
text_encoder_2 = text_encoder_two, | |
tokenizer = tokenizer_one, | |
tokenizer_2 = tokenizer_two, | |
scheduler = noise_scheduler, | |
image_encoder=image_encoder, | |
torch_dtype=torch.float16, | |
) | |
pipe.unet_encoder = UNet_Encoder | |
# Standard size of shein images | |
#WIDTH = int(4160/5) | |
#HEIGHT = int(6240/5) | |
# Standard size on which model is trained | |
WIDTH = int(768) | |
HEIGHT = int(1024) | |
POSE_WIDTH = int(WIDTH/2) # int(WIDTH/2) | |
POSE_HEIGHT = int(HEIGHT/2) #int(HEIGHT/2) | |
ARM_WIDTH = "dc" # "hd" # hd -> full sleeve, dc for half sleeve | |
CATEGORY = "upper_body" # "lower_body" | |
def is_cropping_required(width, height): | |
# If aspect ratio is 1.5, which is same as standard 2x3 ( 768x1024 ), then no need to crop, else crop | |
aspect_ratio = round(height/width, 2) | |
if aspect_ratio == 2: | |
return False | |
return True | |
def start_tryon(human_img_dict,garm_img,garment_des, background_img, is_checked,is_checked_crop,denoise_steps,seed): | |
logging.info("Starting try on") | |
#device = "cuda" | |
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
openpose_model.preprocessor.body_estimation.model.to(device) | |
pipe.to(device) | |
pipe.unet_encoder.to(device) | |
human_img_orig = human_img_dict["background"].convert("RGB") # ImageEditor | |
#human_img_orig = human_img_dict.convert("RGB") # Image | |
""" | |
# Derive HEIGHT & WIDTH such that width is not more than 1000. This will cater to both Shein images (4160x6240) of 3:4 AR and model standard images ( 768x1024 ) of 2:3 AR | |
WIDTH, HEIGHT = human_img_orig.size | |
division_factor = math.ceil(WIDTH/1000) | |
WIDTH = int(WIDTH/division_factor) | |
HEIGHT = int(HEIGHT/division_factor) | |
POSE_WIDTH = int(WIDTH/2) | |
POSE_HEIGHT = int(HEIGHT/2) | |
""" | |
# is_checked_crop as True if original AR is not same as 2x3 as expected by model | |
w, h = human_img_orig.size | |
is_checked_crop = is_cropping_required(w, h) | |
garm_img= garm_img.convert("RGB").resize((WIDTH,HEIGHT)) | |
if is_checked_crop: | |
# This will crop the image to make it Aspect Ratio of 3 x 4. And then at the end revert it back to original dimentions | |
width, height = human_img_orig.size | |
target_width = int(min(width, height * (3 / 4))) | |
target_height = int(min(height, width * (4 / 3))) | |
left = (width - target_width) / 2 | |
top = (height - target_height) / 2 | |
right = (width + target_width) / 2 | |
bottom = (height + target_height) / 2 | |
cropped_img = human_img_orig.crop((left, top, right, bottom)) | |
crop_size = cropped_img.size | |
human_img = cropped_img.resize((WIDTH, HEIGHT)) | |
else: | |
human_img = human_img_orig.resize((WIDTH, HEIGHT)) | |
# Commenting out naize harmonization for now. We will have to integrate with Deep Learning based Harmonization methods | |
# Do color transfer from background image for better image harmonization | |
#if background_img: | |
# human_img = BackgroundProcessor.intensity_transfer(human_img, background_img) | |
if is_checked: | |
# internally openpose_model is resizing human_img to resolution 384 if not passed as input | |
keypoints = openpose_model(human_img.resize((POSE_WIDTH, POSE_HEIGHT))) | |
model_parse, _ = parsing_model(human_img.resize((POSE_WIDTH, POSE_HEIGHT))) | |
# internally get mask location function is resizing model_parse to 384x512 if width & height not passed | |
mask, mask_gray = get_mask_location(ARM_WIDTH, CATEGORY, model_parse, keypoints) | |
mask = mask.resize((WIDTH, HEIGHT)) | |
logging.info("Mask location on model identified") | |
else: | |
mask = pil_to_binary_mask(human_img_dict['layers'][0].convert("RGB").resize((WIDTH, HEIGHT))) | |
# mask = transforms.ToTensor()(mask) | |
# mask = mask.unsqueeze(0) | |
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img) | |
mask_gray = to_pil_image((mask_gray+1.0)/2.0) | |
human_img_arg = _apply_exif_orientation(human_img.resize((POSE_WIDTH,POSE_HEIGHT))) | |
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") | |
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', device)) | |
# verbosity = getattr(args, "verbosity", None) | |
pose_img = args.func(args,human_img_arg) | |
pose_img = pose_img[:,:,::-1] | |
pose_img = Image.fromarray(pose_img).resize((WIDTH,HEIGHT)) | |
with torch.no_grad(): | |
# Extract the images | |
with torch.cuda.amp.autocast(): | |
with torch.no_grad(): | |
prompt = "model is wearing " + garment_des | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
with torch.inference_mode(): | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt( | |
prompt, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt = "a photo of " + garment_des | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * 1 | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * 1 | |
with torch.inference_mode(): | |
( | |
prompt_embeds_c, | |
_, | |
_, | |
_, | |
) = pipe.encode_prompt( | |
prompt, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=False, | |
negative_prompt=negative_prompt, | |
) | |
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16) | |
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16) | |
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None | |
images = pipe( | |
prompt_embeds=prompt_embeds.to(device,torch.float16), | |
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16), | |
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16), | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16), | |
num_inference_steps=denoise_steps, | |
generator=generator, | |
strength = 1.0, | |
pose_img = pose_img.to(device,torch.float16), | |
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16), | |
cloth = garm_tensor.to(device,torch.float16), | |
mask_image=mask, | |
image=human_img, | |
height=HEIGHT, | |
width=WIDTH, | |
ip_adapter_image = garm_img.resize((WIDTH,HEIGHT)), | |
guidance_scale=2.0, | |
)[0] | |
if is_checked_crop: | |
out_img = images[0].resize(crop_size) | |
human_img_orig.paste(out_img, (int(left), int(top))) | |
final_image = human_img_orig | |
# return human_img_orig, mask_gray | |
else: | |
final_image = images[0] | |
# return images[0], mask_gray | |
# apply background to final image | |
if background_img: | |
logging.info("Adding background") | |
final_image = BackgroundProcessor.replace_background_with_removebg(final_image, background_img) | |
return final_image, mask_gray | |
# return images[0], mask_gray | |
garm_list = os.listdir(os.path.join(example_path,"cloth")) | |
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list] | |
human_list = os.listdir(os.path.join(example_path,"human")) | |
human_list_path = [os.path.join(example_path,"human",human) for human in human_list] | |
human_ex_list = [] | |
#human_ex_list = human_list_path # Image | |
#""" if using ImageEditor instead of Image while taking input, use this - ImageEditor | |
for ex_human in human_list_path: | |
ex_dict= {} | |
ex_dict['background'] = ex_human | |
ex_dict['layers'] = None | |
ex_dict['composite'] = None | |
human_ex_list.append(ex_dict) | |
#""" | |
##default human | |
# api_open=True will allow this API to be hit using curl | |
image_blocks = gr.Blocks().queue(api_open=True) | |
with image_blocks as demo: | |
gr.Markdown("## Virtual Try-On πππ") | |
gr.Markdown("Upload an image of a person and an image of a garment β¨.") | |
with gr.Row(): | |
with gr.Column(): | |
# changing from ImageEditor to Image to allow easy passing of data through API | |
# instead of passing {"dictionary": <>} ( which is failing ), we can directly pass the image | |
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True) | |
#imgs = gr.Image(sources='upload', type='pil',label='Human. Mask with pen or use auto-masking') | |
with gr.Row(): | |
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True) | |
with gr.Row(): | |
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False) | |
example = gr.Examples( | |
inputs=imgs, | |
examples_per_page=10, | |
examples=human_ex_list | |
) | |
with gr.Column(): | |
garm_img = gr.Image(label="Garment", sources='upload', type="pil") | |
with gr.Row(elem_id="prompt-container"): | |
with gr.Row(): | |
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt") | |
example = gr.Examples( | |
inputs=garm_img, | |
examples_per_page=8, | |
examples=garm_list_path) | |
with gr.Column(): | |
background_img = gr.Image(label="Background", sources='upload', type="pil") | |
with gr.Column(): | |
with gr.Row(): | |
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False) | |
with gr.Row(): | |
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False) | |
""" | |
with gr.Column(): | |
# image_out = gr.Image(label="Output", elem_id="output-img", height=400) | |
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False) | |
with gr.Column(): | |
# image_out = gr.Image(label="Output", elem_id="output-img", height=400) | |
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False) | |
""" | |
with gr.Column(): | |
try_button = gr.Button(value="Try-on") | |
with gr.Accordion(label="Advanced Settings", open=False): | |
with gr.Row(): | |
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1) | |
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42) | |
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, background_img, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon') | |
image_blocks.launch() | |