|
import os |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
from PIL import Image, ImageDraw |
|
import traceback |
|
|
|
import gradio as gr |
|
from gradio import processing_utils |
|
|
|
import torch |
|
from docquery import pipeline |
|
from docquery.document import load_bytes, load_document, ImageDocument |
|
from docquery.ocr_reader import get_ocr_reader |
|
|
|
|
|
def ensure_list(x): |
|
if isinstance(x, list): |
|
return x |
|
else: |
|
return [x] |
|
|
|
|
|
CHECKPOINTS = { |
|
"LayoutLMv1 for Invoices 🧾": "impira/layoutlm-invoices", |
|
} |
|
|
|
PIPELINES = {} |
|
|
|
|
|
def construct_pipeline(task, model): |
|
global PIPELINES |
|
if model in PIPELINES: |
|
return PIPELINES[model] |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
ret = pipeline(task=task, model=CHECKPOINTS[model], device=device) |
|
PIPELINES[model] = ret |
|
return ret |
|
|
|
|
|
def run_pipeline(model, question, document, top_k): |
|
pipeline = construct_pipeline("document-question-answering", model) |
|
return pipeline(question=question, **document.context, top_k=top_k) |
|
|
|
|
|
|
|
|
|
def lift_word_boxes(document, page): |
|
return document.context["image"][page][1] |
|
|
|
|
|
def expand_bbox(word_boxes): |
|
if len(word_boxes) == 0: |
|
return None |
|
|
|
min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes]) |
|
min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)] |
|
return [min_x, min_y, max_x, max_y] |
|
|
|
|
|
|
|
def normalize_bbox(box, width, height, padding=0.005): |
|
min_x, min_y, max_x, max_y = [c / 1000 for c in box] |
|
if padding != 0: |
|
min_x = max(0, min_x - padding) |
|
min_y = max(0, min_y - padding) |
|
max_x = min(max_x + padding, 1) |
|
max_y = min(max_y + padding, 1) |
|
return [min_x * width, min_y * height, max_x * width, max_y * height] |
|
|
|
|
|
EXAMPLES = [ |
|
[ |
|
"acze_tech.png", |
|
"Tech Invoice", |
|
], |
|
[ |
|
"acze.png", |
|
"Commercial Goods Invoice", |
|
], |
|
[ |
|
"north_sea.png", |
|
"Energy Invoice", |
|
], |
|
] |
|
|
|
QUESTION_FILES = { |
|
"Tech Invoice": "acze_tech.pdf", |
|
"Energy Invoice": "north_sea.pdf", |
|
} |
|
|
|
for q in QUESTION_FILES.keys(): |
|
assert any(x[1] == q for x in EXAMPLES) |
|
|
|
FIELDS = { |
|
"Vendor Name": ["Vendor Name - Logo?", "Vendor Name - Address?"], |
|
"Vendor Address": ["Vendor Address?"], |
|
"Customer Name": ["Customer Name?"], |
|
"Customer Address": ["Customer Address?"], |
|
"Invoice Number": ["Invoice Number?"], |
|
"Invoice Date": ["Invoice Date?"], |
|
"Due Date": ["Due Date?"], |
|
"Subtotal": ["Subtotal?"], |
|
"Total Tax": ["Total Tax?"], |
|
"Invoice Total": ["Invoice Total?"], |
|
"Amount Due": ["Amount Due?"], |
|
"Payment Terms": ["Payment Terms?"], |
|
"Remit To Name": ["Remit To Name?"], |
|
"Remit To Address": ["Remit To Address?"], |
|
} |
|
|
|
|
|
def empty_table(fields): |
|
return {"value": [[name, None] for name in fields.keys()], "interactive": False} |
|
|
|
|
|
def process_document(document, fields, model, error=None): |
|
if document is not None and error is None: |
|
preview, json_output, table = process_fields(document, fields, model) |
|
return ( |
|
document, |
|
fields, |
|
preview, |
|
gr.update(visible=True), |
|
gr.update(visible=False, value=None), |
|
json_output, |
|
table, |
|
) |
|
else: |
|
return ( |
|
None, |
|
fields, |
|
None, |
|
gr.update(visible=False), |
|
gr.update(visible=True, value=error) if error is not None else None, |
|
None, |
|
gr.update(**empty_table(fields)), |
|
) |
|
|
|
|
|
def process_path(path, fields, model): |
|
error = None |
|
document = None |
|
if path: |
|
try: |
|
document = load_document(path) |
|
except Exception as e: |
|
traceback.print_exc() |
|
error = str(e) |
|
|
|
return process_document(document, fields, model, error) |
|
|
|
|
|
def process_upload(file, fields, model): |
|
return process_path(file.name if file else None, fields, model) |
|
|
|
|
|
colors = ["#64A087", "green", "black"] |
|
|
|
|
|
def annotate_page(prediction, pages, document): |
|
if prediction is not None and "word_ids" in prediction: |
|
image = pages[prediction["page"]] |
|
draw = ImageDraw.Draw(image, "RGBA") |
|
word_boxes = lift_word_boxes(document, prediction["page"]) |
|
x1, y1, x2, y2 = normalize_bbox( |
|
expand_bbox([word_boxes[i] for i in prediction["word_ids"]]), |
|
image.width, |
|
image.height, |
|
) |
|
draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255))) |
|
|
|
|
|
def process_question( |
|
question, document, img_gallery, model, fields, output, output_table |
|
): |
|
field_name = question |
|
if field_name is not None: |
|
fields = {field_name: [question], **fields} |
|
|
|
if not question or document is None: |
|
return None, document, fields, output, gr.update(value=output_table) |
|
|
|
text_value = None |
|
pages = [processing_utils.decode_base64_to_image(p) for p in img_gallery] |
|
prediction = run_pipeline(model, question, document, 1) |
|
annotate_page(prediction, pages, document) |
|
|
|
output = {field_name: prediction, **output} |
|
table = [[field_name, prediction.get("answer")]] + output_table.values.tolist() |
|
return ( |
|
None, |
|
gr.update(visible=True, value=pages), |
|
fields, |
|
output, |
|
gr.update(value=table, interactive=False), |
|
) |
|
|
|
|
|
def process_fields(document, fields, model=list(CHECKPOINTS.keys())[0]): |
|
pages = [x.copy().convert("RGB") for x in document.preview] |
|
|
|
ret = {} |
|
table = [] |
|
|
|
for (field_name, questions) in fields.items(): |
|
answers = [ |
|
a |
|
for q in questions |
|
for a in ensure_list(run_pipeline(model, q, document, top_k=1)) |
|
if a.get("score", 1) > 0.5 |
|
] |
|
answers.sort(key=lambda x: -x.get("score", 0) if x else 0) |
|
top = answers[0] if len(answers) > 0 else None |
|
annotate_page(top, pages, document) |
|
ret[field_name] = top |
|
table.append([field_name, top.get("answer") if top is not None else None]) |
|
|
|
return ( |
|
gr.update(visible=True, value=pages), |
|
gr.update(visible=True, value=ret), |
|
table |
|
) |
|
|
|
|
|
def load_example_document(img, title, fields, model): |
|
document = None |
|
if img is not None: |
|
if title in QUESTION_FILES: |
|
document = load_document(QUESTION_FILES[title]) |
|
else: |
|
document = ImageDocument(Image.fromarray(img), ocr_reader=get_ocr_reader()) |
|
|
|
return process_document(document, fields, model) |
|
|
|
|
|
CSS = """ |
|
#question input { |
|
font-size: 16px; |
|
} |
|
#url-textbox, #question-textbox { |
|
padding: 0 !important; |
|
} |
|
#short-upload-box .w-full { |
|
min-height: 10rem !important; |
|
} |
|
/* I think something like this can be used to re-shape |
|
* the table |
|
*/ |
|
/* |
|
.gr-samples-table tr { |
|
display: inline; |
|
} |
|
.gr-samples-table .p-2 { |
|
width: 100px; |
|
} |
|
*/ |
|
#select-a-file { |
|
width: 100%; |
|
} |
|
#file-clear { |
|
padding-top: 2px !important; |
|
padding-bottom: 2px !important; |
|
padding-left: 8px !important; |
|
padding-right: 8px !important; |
|
margin-top: 10px; |
|
} |
|
.gradio-container .gr-button-primary { |
|
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%); |
|
border: 1px solid #B0DCCC; |
|
border-radius: 8px; |
|
color: #1B8700; |
|
} |
|
.gradio-container.dark button#submit-button { |
|
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%); |
|
border: 1px solid #B0DCCC; |
|
border-radius: 8px; |
|
color: #1B8700 |
|
} |
|
|
|
table.gr-samples-table tr td { |
|
border: none; |
|
outline: none; |
|
} |
|
|
|
table.gr-samples-table tr td:first-of-type { |
|
width: 0%; |
|
} |
|
|
|
div#short-upload-box div.absolute { |
|
display: none !important; |
|
} |
|
|
|
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div { |
|
gap: 0px 2%; |
|
} |
|
|
|
gradio-app div div div div.w-full, .gradio-app div div div div.w-full { |
|
gap: 0px; |
|
} |
|
|
|
gradio-app h2, .gradio-app h2 { |
|
padding-top: 10px; |
|
} |
|
|
|
#answer { |
|
overflow-y: scroll; |
|
color: white; |
|
background: #666; |
|
border-color: #666; |
|
font-size: 20px; |
|
font-weight: bold; |
|
} |
|
|
|
#answer span { |
|
color: white; |
|
} |
|
|
|
#answer textarea { |
|
color:white; |
|
background: #777; |
|
border-color: #777; |
|
font-size: 18px; |
|
} |
|
|
|
#url-error input { |
|
color: red; |
|
} |
|
|
|
#results-table { |
|
max-height: 600px; |
|
overflow-y: scroll; |
|
} |
|
|
|
""" |
|
|
|
with gr.Blocks(css=CSS) as demo: |
|
gr.Markdown("# DocQuery for Invoices") |
|
gr.Markdown( |
|
"DocQuery (created by [Impira](https://impira.com?utm_source=huggingface&utm_medium=referral&utm_campaign=invoices_space))" |
|
" uses LayoutLMv1 fine-tuned on an invoice dataset" |
|
" as well as DocVQA and SQuAD, which boot its general comprehension skills. The model is an enhanced" |
|
" QA architecture that supports selecting blocks of text which may be non-consecutive, which is a major" |
|
" issue when dealing with invoice documents (e.g. addresses)." |
|
" To use it, simply upload an image or PDF invoice and the model will predict values for several fields." |
|
" You can also create additional fields by simply typing in a question." |
|
" DocQuery is available on [Github](https://github.com/impira/docquery)." |
|
) |
|
|
|
document = gr.Variable() |
|
fields = gr.Variable(value={**FIELDS}) |
|
example_question = gr.Textbox(visible=False) |
|
example_image = gr.Image(visible=False) |
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown("## Select an invoice", elem_id="select-a-file") |
|
img_clear_button = gr.Button( |
|
"Clear", variant="secondary", elem_id="file-clear", visible=False |
|
) |
|
image = gr.Gallery(visible=False) |
|
with gr.Row(equal_height=True): |
|
with gr.Column(): |
|
with gr.Row(): |
|
url = gr.Textbox( |
|
show_label=False, |
|
placeholder="URL", |
|
lines=1, |
|
max_lines=1, |
|
elem_id="url-textbox", |
|
) |
|
submit = gr.Button("Get") |
|
url_error = gr.Textbox( |
|
visible=False, |
|
elem_id="url-error", |
|
max_lines=1, |
|
interactive=False, |
|
label="Error", |
|
) |
|
gr.Markdown("— or —") |
|
upload = gr.File(label=None, interactive=True, elem_id="short-upload-box") |
|
gr.Examples( |
|
examples=EXAMPLES, |
|
inputs=[example_image, example_question], |
|
) |
|
|
|
with gr.Column() as col: |
|
gr.Markdown("## Results") |
|
with gr.Tabs(): |
|
with gr.TabItem("Table"): |
|
output_table = gr.Dataframe( |
|
headers=["Field", "Value"], |
|
**empty_table(fields.value), |
|
elem_id="results-table" |
|
) |
|
|
|
with gr.TabItem("JSON"): |
|
output = gr.JSON(label="Output", visible=True) |
|
|
|
model = gr.Radio( |
|
choices=list(CHECKPOINTS.keys()), |
|
value=list(CHECKPOINTS.keys())[0], |
|
label="Model", |
|
visible=False, |
|
) |
|
|
|
gr.Markdown("### Ask a question") |
|
with gr.Row(): |
|
question = gr.Textbox( |
|
label="Question", |
|
show_label=False, |
|
placeholder="e.g. What is the invoice number?", |
|
lines=1, |
|
max_lines=1, |
|
elem_id="question-textbox", |
|
) |
|
clear_button = gr.Button("Clear", variant="secondary", visible=False) |
|
submit_button = gr.Button( |
|
"Add", variant="primary", elem_id="submit-button" |
|
) |
|
|
|
for cb in [img_clear_button, clear_button]: |
|
cb.click( |
|
lambda _: ( |
|
gr.update(visible=False, value=None), |
|
None, |
|
|
|
gr.update(value=None), |
|
gr.update(**empty_table(fields.value)), |
|
gr.update(visible=False), |
|
None, |
|
None, |
|
None, |
|
gr.update(visible=False, value=None), |
|
None, |
|
), |
|
inputs=clear_button, |
|
outputs=[ |
|
image, |
|
document, |
|
|
|
output, |
|
output_table, |
|
img_clear_button, |
|
example_image, |
|
upload, |
|
url, |
|
url_error, |
|
question, |
|
], |
|
) |
|
|
|
submit_outputs = [ |
|
document, |
|
fields, |
|
image, |
|
img_clear_button, |
|
url_error, |
|
output, |
|
output_table, |
|
] |
|
|
|
upload.change( |
|
fn=process_upload, |
|
inputs=[upload, fields, model], |
|
outputs=submit_outputs, |
|
) |
|
|
|
submit.click( |
|
fn=process_path, |
|
inputs=[url, fields, model], |
|
outputs=submit_outputs, |
|
) |
|
|
|
for action in [question.submit, submit_button.click]: |
|
action( |
|
fn=process_question, |
|
inputs=[question, document, image, model, fields, output, output_table], |
|
outputs=[question, image, fields, output, output_table], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
example_image.change( |
|
fn=load_example_document, |
|
inputs=[example_image, example_question, fields, model], |
|
outputs=submit_outputs, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(enable_queue=False) |
|
|