padalavinaybhushan
commited on
Commit
β’
0e5d606
1
Parent(s):
60a9256
START
Browse files- acze.png +0 -0
- acze_tech.pdf +0 -0
- acze_tech.png +0 -0
- app.py +497 -0
- invoice.png +0 -0
- north_sea.pdf +0 -0
- north_sea.png +0 -0
- packages.txt +2 -0
- requirements.txt +4 -0
acze.png
ADDED
acze_tech.pdf
ADDED
The diff for this file is too large to render.
See raw diff
|
|
acze_tech.png
ADDED
app.py
ADDED
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
4 |
+
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
import traceback
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
from gradio import processing_utils
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from docquery import pipeline
|
13 |
+
from docquery.document import load_bytes, load_document, ImageDocument
|
14 |
+
from docquery.ocr_reader import get_ocr_reader
|
15 |
+
|
16 |
+
|
17 |
+
def ensure_list(x):
|
18 |
+
if isinstance(x, list):
|
19 |
+
return x
|
20 |
+
else:
|
21 |
+
return [x]
|
22 |
+
|
23 |
+
|
24 |
+
CHECKPOINTS = {
|
25 |
+
"LayoutLMv1 for Invoices π§Ύ": "impira/layoutlm-invoices",
|
26 |
+
}
|
27 |
+
|
28 |
+
PIPELINES = {}
|
29 |
+
|
30 |
+
|
31 |
+
def construct_pipeline(task, model):
|
32 |
+
global PIPELINES
|
33 |
+
if model in PIPELINES:
|
34 |
+
return PIPELINES[model]
|
35 |
+
|
36 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
+
ret = pipeline(task=task, model=CHECKPOINTS[model], device=device)
|
38 |
+
PIPELINES[model] = ret
|
39 |
+
return ret
|
40 |
+
|
41 |
+
|
42 |
+
def run_pipeline(model, question, document, top_k):
|
43 |
+
pipeline = construct_pipeline("document-question-answering", model)
|
44 |
+
return pipeline(question=question, **document.context, top_k=top_k)
|
45 |
+
|
46 |
+
|
47 |
+
# TODO: Move into docquery
|
48 |
+
# TODO: Support words past the first page (or window?)
|
49 |
+
def lift_word_boxes(document, page):
|
50 |
+
return document.context["image"][page][1]
|
51 |
+
|
52 |
+
|
53 |
+
def expand_bbox(word_boxes):
|
54 |
+
if len(word_boxes) == 0:
|
55 |
+
return None
|
56 |
+
|
57 |
+
min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes])
|
58 |
+
min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)]
|
59 |
+
return [min_x, min_y, max_x, max_y]
|
60 |
+
|
61 |
+
|
62 |
+
# LayoutLM boxes are normalized to 0, 1000
|
63 |
+
def normalize_bbox(box, width, height, padding=0.005):
|
64 |
+
min_x, min_y, max_x, max_y = [c / 1000 for c in box]
|
65 |
+
if padding != 0:
|
66 |
+
min_x = max(0, min_x - padding)
|
67 |
+
min_y = max(0, min_y - padding)
|
68 |
+
max_x = min(max_x + padding, 1)
|
69 |
+
max_y = min(max_y + padding, 1)
|
70 |
+
return [min_x * width, min_y * height, max_x * width, max_y * height]
|
71 |
+
|
72 |
+
|
73 |
+
EXAMPLES = [
|
74 |
+
[
|
75 |
+
"acze_tech.png",
|
76 |
+
"Tech Invoice",
|
77 |
+
],
|
78 |
+
[
|
79 |
+
"acze.png",
|
80 |
+
"Commercial Goods Invoice",
|
81 |
+
],
|
82 |
+
[
|
83 |
+
"north_sea.png",
|
84 |
+
"Energy Invoice",
|
85 |
+
],
|
86 |
+
]
|
87 |
+
|
88 |
+
QUESTION_FILES = {
|
89 |
+
"Tech Invoice": "acze_tech.pdf",
|
90 |
+
"Energy Invoice": "north_sea.pdf",
|
91 |
+
}
|
92 |
+
|
93 |
+
for q in QUESTION_FILES.keys():
|
94 |
+
assert any(x[1] == q for x in EXAMPLES)
|
95 |
+
|
96 |
+
FIELDS = {
|
97 |
+
"Vendor Name": ["Vendor Name - Logo?", "Vendor Name - Address?"],
|
98 |
+
"Vendor Address": ["Vendor Address?"],
|
99 |
+
"Customer Name": ["Customer Name?"],
|
100 |
+
"Customer Address": ["Customer Address?"],
|
101 |
+
"Invoice Number": ["Invoice Number?"],
|
102 |
+
"Invoice Date": ["Invoice Date?"],
|
103 |
+
"Due Date": ["Due Date?"],
|
104 |
+
"Subtotal": ["Subtotal?"],
|
105 |
+
"Total Tax": ["Total Tax?"],
|
106 |
+
"Invoice Total": ["Invoice Total?"],
|
107 |
+
"Amount Due": ["Amount Due?"],
|
108 |
+
"Payment Terms": ["Payment Terms?"],
|
109 |
+
"Remit To Name": ["Remit To Name?"],
|
110 |
+
"Remit To Address": ["Remit To Address?"],
|
111 |
+
}
|
112 |
+
|
113 |
+
|
114 |
+
def empty_table(fields):
|
115 |
+
return {"value": [[name, None] for name in fields.keys()], "interactive": False}
|
116 |
+
|
117 |
+
|
118 |
+
def process_document(document, fields, model, error=None):
|
119 |
+
if document is not None and error is None:
|
120 |
+
preview, json_output, table = process_fields(document, fields, model)
|
121 |
+
return (
|
122 |
+
document,
|
123 |
+
fields,
|
124 |
+
preview,
|
125 |
+
gr.update(visible=True),
|
126 |
+
gr.update(visible=False, value=None),
|
127 |
+
json_output,
|
128 |
+
table,
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
return (
|
132 |
+
None,
|
133 |
+
fields,
|
134 |
+
None,
|
135 |
+
gr.update(visible=False),
|
136 |
+
gr.update(visible=True, value=error) if error is not None else None,
|
137 |
+
None,
|
138 |
+
gr.update(**empty_table(fields)),
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
def process_path(path, fields, model):
|
143 |
+
error = None
|
144 |
+
document = None
|
145 |
+
if path:
|
146 |
+
try:
|
147 |
+
document = load_document(path)
|
148 |
+
except Exception as e:
|
149 |
+
traceback.print_exc()
|
150 |
+
error = str(e)
|
151 |
+
|
152 |
+
return process_document(document, fields, model, error)
|
153 |
+
|
154 |
+
|
155 |
+
def process_upload(file, fields, model):
|
156 |
+
return process_path(file.name if file else None, fields, model)
|
157 |
+
|
158 |
+
|
159 |
+
colors = ["#64A087", "green", "black"]
|
160 |
+
|
161 |
+
|
162 |
+
def annotate_page(prediction, pages, document):
|
163 |
+
if prediction is not None and "word_ids" in prediction:
|
164 |
+
image = pages[prediction["page"]]
|
165 |
+
draw = ImageDraw.Draw(image, "RGBA")
|
166 |
+
word_boxes = lift_word_boxes(document, prediction["page"])
|
167 |
+
x1, y1, x2, y2 = normalize_bbox(
|
168 |
+
expand_bbox([word_boxes[i] for i in prediction["word_ids"]]),
|
169 |
+
image.width,
|
170 |
+
image.height,
|
171 |
+
)
|
172 |
+
draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255)))
|
173 |
+
|
174 |
+
|
175 |
+
def process_question(
|
176 |
+
question, document, img_gallery, model, fields, output, output_table
|
177 |
+
):
|
178 |
+
field_name = question
|
179 |
+
if field_name is not None:
|
180 |
+
fields = {field_name: [question], **fields}
|
181 |
+
|
182 |
+
if not question or document is None:
|
183 |
+
return None, document, fields, output, gr.update(value=output_table)
|
184 |
+
|
185 |
+
text_value = None
|
186 |
+
pages = [processing_utils.decode_base64_to_image(p) for p in img_gallery]
|
187 |
+
prediction = run_pipeline(model, question, document, 1)
|
188 |
+
annotate_page(prediction, pages, document)
|
189 |
+
|
190 |
+
output = {field_name: prediction, **output}
|
191 |
+
table = [[field_name, prediction.get("answer")]] + output_table.values.tolist()
|
192 |
+
return (
|
193 |
+
None,
|
194 |
+
gr.update(visible=True, value=pages),
|
195 |
+
fields,
|
196 |
+
output,
|
197 |
+
gr.update(value=table, interactive=False),
|
198 |
+
)
|
199 |
+
|
200 |
+
|
201 |
+
def process_fields(document, fields, model=list(CHECKPOINTS.keys())[0]):
|
202 |
+
pages = [x.copy().convert("RGB") for x in document.preview]
|
203 |
+
|
204 |
+
ret = {}
|
205 |
+
table = []
|
206 |
+
|
207 |
+
for (field_name, questions) in fields.items():
|
208 |
+
answers = [
|
209 |
+
a
|
210 |
+
for q in questions
|
211 |
+
for a in ensure_list(run_pipeline(model, q, document, top_k=1))
|
212 |
+
if a.get("score", 1) > 0.5
|
213 |
+
]
|
214 |
+
answers.sort(key=lambda x: -x.get("score", 0) if x else 0)
|
215 |
+
top = answers[0] if len(answers) > 0 else None
|
216 |
+
annotate_page(top, pages, document)
|
217 |
+
ret[field_name] = top
|
218 |
+
table.append([field_name, top.get("answer") if top is not None else None])
|
219 |
+
|
220 |
+
return (
|
221 |
+
gr.update(visible=True, value=pages),
|
222 |
+
gr.update(visible=True, value=ret),
|
223 |
+
table
|
224 |
+
)
|
225 |
+
|
226 |
+
|
227 |
+
def load_example_document(img, title, fields, model):
|
228 |
+
document = None
|
229 |
+
if img is not None:
|
230 |
+
if title in QUESTION_FILES:
|
231 |
+
document = load_document(QUESTION_FILES[title])
|
232 |
+
else:
|
233 |
+
document = ImageDocument(Image.fromarray(img), ocr_reader=get_ocr_reader())
|
234 |
+
|
235 |
+
return process_document(document, fields, model)
|
236 |
+
|
237 |
+
|
238 |
+
CSS = """
|
239 |
+
#question input {
|
240 |
+
font-size: 16px;
|
241 |
+
}
|
242 |
+
#url-textbox, #question-textbox {
|
243 |
+
padding: 0 !important;
|
244 |
+
}
|
245 |
+
#short-upload-box .w-full {
|
246 |
+
min-height: 10rem !important;
|
247 |
+
}
|
248 |
+
/* I think something like this can be used to re-shape
|
249 |
+
* the table
|
250 |
+
*/
|
251 |
+
/*
|
252 |
+
.gr-samples-table tr {
|
253 |
+
display: inline;
|
254 |
+
}
|
255 |
+
.gr-samples-table .p-2 {
|
256 |
+
width: 100px;
|
257 |
+
}
|
258 |
+
*/
|
259 |
+
#select-a-file {
|
260 |
+
width: 100%;
|
261 |
+
}
|
262 |
+
#file-clear {
|
263 |
+
padding-top: 2px !important;
|
264 |
+
padding-bottom: 2px !important;
|
265 |
+
padding-left: 8px !important;
|
266 |
+
padding-right: 8px !important;
|
267 |
+
margin-top: 10px;
|
268 |
+
}
|
269 |
+
.gradio-container .gr-button-primary {
|
270 |
+
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
|
271 |
+
border: 1px solid #B0DCCC;
|
272 |
+
border-radius: 8px;
|
273 |
+
color: #1B8700;
|
274 |
+
}
|
275 |
+
.gradio-container.dark button#submit-button {
|
276 |
+
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
|
277 |
+
border: 1px solid #B0DCCC;
|
278 |
+
border-radius: 8px;
|
279 |
+
color: #1B8700
|
280 |
+
}
|
281 |
+
|
282 |
+
table.gr-samples-table tr td {
|
283 |
+
border: none;
|
284 |
+
outline: none;
|
285 |
+
}
|
286 |
+
|
287 |
+
table.gr-samples-table tr td:first-of-type {
|
288 |
+
width: 0%;
|
289 |
+
}
|
290 |
+
|
291 |
+
div#short-upload-box div.absolute {
|
292 |
+
display: none !important;
|
293 |
+
}
|
294 |
+
|
295 |
+
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div {
|
296 |
+
gap: 0px 2%;
|
297 |
+
}
|
298 |
+
|
299 |
+
gradio-app div div div div.w-full, .gradio-app div div div div.w-full {
|
300 |
+
gap: 0px;
|
301 |
+
}
|
302 |
+
|
303 |
+
gradio-app h2, .gradio-app h2 {
|
304 |
+
padding-top: 10px;
|
305 |
+
}
|
306 |
+
|
307 |
+
#answer {
|
308 |
+
overflow-y: scroll;
|
309 |
+
color: white;
|
310 |
+
background: #666;
|
311 |
+
border-color: #666;
|
312 |
+
font-size: 20px;
|
313 |
+
font-weight: bold;
|
314 |
+
}
|
315 |
+
|
316 |
+
#answer span {
|
317 |
+
color: white;
|
318 |
+
}
|
319 |
+
|
320 |
+
#answer textarea {
|
321 |
+
color:white;
|
322 |
+
background: #777;
|
323 |
+
border-color: #777;
|
324 |
+
font-size: 18px;
|
325 |
+
}
|
326 |
+
|
327 |
+
#url-error input {
|
328 |
+
color: red;
|
329 |
+
}
|
330 |
+
|
331 |
+
#results-table {
|
332 |
+
max-height: 600px;
|
333 |
+
overflow-y: scroll;
|
334 |
+
}
|
335 |
+
|
336 |
+
"""
|
337 |
+
|
338 |
+
with gr.Blocks(css=CSS) as demo:
|
339 |
+
gr.Markdown("# DocQuery for Invoices")
|
340 |
+
gr.Markdown(
|
341 |
+
"DocQuery (created by [Impira](https://impira.com?utm_source=huggingface&utm_medium=referral&utm_campaign=invoices_space))"
|
342 |
+
" uses LayoutLMv1 fine-tuned on an invoice dataset"
|
343 |
+
" as well as DocVQA and SQuAD, which boot its general comprehension skills. The model is an enhanced"
|
344 |
+
" QA architecture that supports selecting blocks of text which may be non-consecutive, which is a major"
|
345 |
+
" issue when dealing with invoice documents (e.g. addresses)."
|
346 |
+
" To use it, simply upload an image or PDF invoice and the model will predict values for several fields."
|
347 |
+
" You can also create additional fields by simply typing in a question."
|
348 |
+
" DocQuery is available on [Github](https://github.com/impira/docquery)."
|
349 |
+
)
|
350 |
+
|
351 |
+
document = gr.Variable()
|
352 |
+
fields = gr.Variable(value={**FIELDS})
|
353 |
+
example_question = gr.Textbox(visible=False)
|
354 |
+
example_image = gr.Image(visible=False)
|
355 |
+
|
356 |
+
with gr.Row(equal_height=True):
|
357 |
+
with gr.Column():
|
358 |
+
with gr.Row():
|
359 |
+
gr.Markdown("## Select an invoice", elem_id="select-a-file")
|
360 |
+
img_clear_button = gr.Button(
|
361 |
+
"Clear", variant="secondary", elem_id="file-clear", visible=False
|
362 |
+
)
|
363 |
+
image = gr.Gallery(visible=False)
|
364 |
+
with gr.Row(equal_height=True):
|
365 |
+
with gr.Column():
|
366 |
+
with gr.Row():
|
367 |
+
url = gr.Textbox(
|
368 |
+
show_label=False,
|
369 |
+
placeholder="URL",
|
370 |
+
lines=1,
|
371 |
+
max_lines=1,
|
372 |
+
elem_id="url-textbox",
|
373 |
+
)
|
374 |
+
submit = gr.Button("Get")
|
375 |
+
url_error = gr.Textbox(
|
376 |
+
visible=False,
|
377 |
+
elem_id="url-error",
|
378 |
+
max_lines=1,
|
379 |
+
interactive=False,
|
380 |
+
label="Error",
|
381 |
+
)
|
382 |
+
gr.Markdown("β or β")
|
383 |
+
upload = gr.File(label=None, interactive=True, elem_id="short-upload-box")
|
384 |
+
gr.Examples(
|
385 |
+
examples=EXAMPLES,
|
386 |
+
inputs=[example_image, example_question],
|
387 |
+
)
|
388 |
+
|
389 |
+
with gr.Column() as col:
|
390 |
+
gr.Markdown("## Results")
|
391 |
+
with gr.Tabs():
|
392 |
+
with gr.TabItem("Table"):
|
393 |
+
output_table = gr.Dataframe(
|
394 |
+
headers=["Field", "Value"],
|
395 |
+
**empty_table(fields.value),
|
396 |
+
elem_id="results-table"
|
397 |
+
)
|
398 |
+
|
399 |
+
with gr.TabItem("JSON"):
|
400 |
+
output = gr.JSON(label="Output", visible=True)
|
401 |
+
|
402 |
+
model = gr.Radio(
|
403 |
+
choices=list(CHECKPOINTS.keys()),
|
404 |
+
value=list(CHECKPOINTS.keys())[0],
|
405 |
+
label="Model",
|
406 |
+
visible=False,
|
407 |
+
)
|
408 |
+
|
409 |
+
gr.Markdown("### Ask a question")
|
410 |
+
with gr.Row():
|
411 |
+
question = gr.Textbox(
|
412 |
+
label="Question",
|
413 |
+
show_label=False,
|
414 |
+
placeholder="e.g. What is the invoice number?",
|
415 |
+
lines=1,
|
416 |
+
max_lines=1,
|
417 |
+
elem_id="question-textbox",
|
418 |
+
)
|
419 |
+
clear_button = gr.Button("Clear", variant="secondary", visible=False)
|
420 |
+
submit_button = gr.Button(
|
421 |
+
"Add", variant="primary", elem_id="submit-button"
|
422 |
+
)
|
423 |
+
|
424 |
+
for cb in [img_clear_button, clear_button]:
|
425 |
+
cb.click(
|
426 |
+
lambda _: (
|
427 |
+
gr.update(visible=False, value=None), # image
|
428 |
+
None, # document
|
429 |
+
# {**FIELDS}, # fields
|
430 |
+
gr.update(value=None), # output
|
431 |
+
gr.update(**empty_table(fields.value)), # output_table
|
432 |
+
gr.update(visible=False),
|
433 |
+
None,
|
434 |
+
None,
|
435 |
+
None,
|
436 |
+
gr.update(visible=False, value=None),
|
437 |
+
None,
|
438 |
+
),
|
439 |
+
inputs=clear_button,
|
440 |
+
outputs=[
|
441 |
+
image,
|
442 |
+
document,
|
443 |
+
# fields,
|
444 |
+
output,
|
445 |
+
output_table,
|
446 |
+
img_clear_button,
|
447 |
+
example_image,
|
448 |
+
upload,
|
449 |
+
url,
|
450 |
+
url_error,
|
451 |
+
question,
|
452 |
+
],
|
453 |
+
)
|
454 |
+
|
455 |
+
submit_outputs = [
|
456 |
+
document,
|
457 |
+
fields,
|
458 |
+
image,
|
459 |
+
img_clear_button,
|
460 |
+
url_error,
|
461 |
+
output,
|
462 |
+
output_table,
|
463 |
+
]
|
464 |
+
|
465 |
+
upload.change(
|
466 |
+
fn=process_upload,
|
467 |
+
inputs=[upload, fields, model],
|
468 |
+
outputs=submit_outputs,
|
469 |
+
)
|
470 |
+
|
471 |
+
submit.click(
|
472 |
+
fn=process_path,
|
473 |
+
inputs=[url, fields, model],
|
474 |
+
outputs=submit_outputs,
|
475 |
+
)
|
476 |
+
|
477 |
+
for action in [question.submit, submit_button.click]:
|
478 |
+
action(
|
479 |
+
fn=process_question,
|
480 |
+
inputs=[question, document, image, model, fields, output, output_table],
|
481 |
+
outputs=[question, image, fields, output, output_table],
|
482 |
+
)
|
483 |
+
|
484 |
+
# model.change(
|
485 |
+
# process_question,
|
486 |
+
# inputs=[question, document, model],
|
487 |
+
# outputs=[image, output, output_table],
|
488 |
+
# )
|
489 |
+
|
490 |
+
example_image.change(
|
491 |
+
fn=load_example_document,
|
492 |
+
inputs=[example_image, example_question, fields, model],
|
493 |
+
outputs=submit_outputs,
|
494 |
+
)
|
495 |
+
|
496 |
+
if __name__ == "__main__":
|
497 |
+
demo.launch(enable_queue=False)
|
invoice.png
ADDED
north_sea.pdf
ADDED
Binary file (70.9 kB). View file
|
|
north_sea.png
ADDED
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
poppler-utils
|
2 |
+
tesseract-ocr
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers.git@21f6f58721dd9154357576be6de54eefef1f1818
|
2 |
+
git+https://github.com/impira/docquery.git@8d92692c36f63ef652f3c84cccedd5674ee7b383
|
3 |
+
sentencepiece
|
4 |
+
torch
|