Spaces:
Runtime error
Runtime error
# load packages | |
import random | |
import yaml | |
import time | |
from munch import Munch | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torchaudio | |
import librosa | |
import click | |
import shutil | |
import warnings | |
warnings.simplefilter('ignore') | |
from torch.utils.tensorboard import SummaryWriter | |
from meldataset import build_dataloader | |
from Utils.ASR.models import ASRCNN | |
from Utils.JDC.model import JDCNet | |
from Utils.PLBERT.util import load_plbert | |
from models import * | |
from losses import * | |
from utils import * | |
from Modules.slmadv import SLMAdversarialLoss | |
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule | |
from optimizers import build_optimizer | |
# simple fix for dataparallel that allows access to class attributes | |
class MyDataParallel(torch.nn.DataParallel): | |
def __getattr__(self, name): | |
try: | |
return super().__getattr__(name) | |
except AttributeError: | |
return getattr(self.module, name) | |
import logging | |
from logging import StreamHandler | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
handler = StreamHandler() | |
handler.setLevel(logging.DEBUG) | |
logger.addHandler(handler) | |
def main(config_path): | |
config = yaml.safe_load(open(config_path)) | |
log_dir = config['log_dir'] | |
if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True) | |
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path))) | |
writer = SummaryWriter(log_dir + "/tensorboard") | |
# write logs | |
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log')) | |
file_handler.setLevel(logging.DEBUG) | |
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s')) | |
logger.addHandler(file_handler) | |
batch_size = config.get('batch_size', 10) | |
epochs = config.get('epochs_2nd', 200) | |
save_freq = config.get('save_freq', 2) | |
log_interval = config.get('log_interval', 10) | |
saving_epoch = config.get('save_freq', 2) | |
data_params = config.get('data_params', None) | |
sr = config['preprocess_params'].get('sr', 24000) | |
train_path = data_params['train_data'] | |
val_path = data_params['val_data'] | |
root_path = data_params['root_path'] | |
min_length = data_params['min_length'] | |
OOD_data = data_params['OOD_data'] | |
max_len = config.get('max_len', 200) | |
loss_params = Munch(config['loss_params']) | |
diff_epoch = loss_params.diff_epoch | |
joint_epoch = loss_params.joint_epoch | |
optimizer_params = Munch(config['optimizer_params']) | |
train_list, val_list = get_data_path_list(train_path, val_path) | |
device = 'cuda' | |
train_dataloader = build_dataloader(train_list, | |
root_path, | |
OOD_data=OOD_data, | |
min_length=min_length, | |
batch_size=batch_size, | |
num_workers=2, | |
dataset_config={}, | |
device=device) | |
val_dataloader = build_dataloader(val_list, | |
root_path, | |
OOD_data=OOD_data, | |
min_length=min_length, | |
batch_size=batch_size, | |
validation=True, | |
num_workers=0, | |
device=device, | |
dataset_config={}) | |
# load pretrained ASR model | |
ASR_config = config.get('ASR_config', False) | |
ASR_path = config.get('ASR_path', False) | |
text_aligner = load_ASR_models(ASR_path, ASR_config) | |
# load pretrained F0 model | |
F0_path = config.get('F0_path', False) | |
pitch_extractor = load_F0_models(F0_path) | |
# load PL-BERT model | |
BERT_path = config.get('PLBERT_dir', False) | |
plbert = load_plbert(BERT_path) | |
# build model | |
model_params = recursive_munch(config['model_params']) | |
multispeaker = model_params.multispeaker | |
model = build_model(model_params, text_aligner, pitch_extractor, plbert) | |
_ = [model[key].to(device) for key in model] | |
# DP | |
for key in model: | |
if key != "mpd" and key != "msd" and key != "wd": | |
model[key] = MyDataParallel(model[key]) | |
start_epoch = 0 | |
iters = 0 | |
load_pretrained = config.get('pretrained_model', '') != '' and config.get('second_stage_load_pretrained', False) | |
if not load_pretrained: | |
if config.get('first_stage_path', '') != '': | |
first_stage_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth')) | |
print('Loading the first stage model at %s ...' % first_stage_path) | |
model, _, start_epoch, iters = load_checkpoint(model, | |
None, | |
first_stage_path, | |
load_only_params=True, | |
ignore_modules=['bert', 'bert_encoder', 'predictor', 'predictor_encoder', 'msd', 'mpd', 'wd', 'diffusion']) # keep starting epoch for tensorboard log | |
# these epochs should be counted from the start epoch | |
diff_epoch += start_epoch | |
joint_epoch += start_epoch | |
epochs += start_epoch | |
model.predictor_encoder = copy.deepcopy(model.style_encoder) | |
else: | |
raise ValueError('You need to specify the path to the first stage model.') | |
gl = GeneratorLoss(model.mpd, model.msd).to(device) | |
dl = DiscriminatorLoss(model.mpd, model.msd).to(device) | |
wl = WavLMLoss(model_params.slm.model, | |
model.wd, | |
sr, | |
model_params.slm.sr).to(device) | |
gl = MyDataParallel(gl) | |
dl = MyDataParallel(dl) | |
wl = MyDataParallel(wl) | |
sampler = DiffusionSampler( | |
model.diffusion.diffusion, | |
sampler=ADPM2Sampler(), | |
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters | |
clamp=False | |
) | |
scheduler_params = { | |
"max_lr": optimizer_params.lr, | |
"pct_start": float(0), | |
"epochs": epochs, | |
"steps_per_epoch": len(train_dataloader), | |
} | |
scheduler_params_dict= {key: scheduler_params.copy() for key in model} | |
scheduler_params_dict['bert']['max_lr'] = optimizer_params.bert_lr * 2 | |
scheduler_params_dict['decoder']['max_lr'] = optimizer_params.ft_lr * 2 | |
scheduler_params_dict['style_encoder']['max_lr'] = optimizer_params.ft_lr * 2 | |
optimizer = build_optimizer({key: model[key].parameters() for key in model}, | |
scheduler_params_dict=scheduler_params_dict, lr=optimizer_params.lr) | |
# adjust BERT learning rate | |
for g in optimizer.optimizers['bert'].param_groups: | |
g['betas'] = (0.9, 0.99) | |
g['lr'] = optimizer_params.bert_lr | |
g['initial_lr'] = optimizer_params.bert_lr | |
g['min_lr'] = 0 | |
g['weight_decay'] = 0.01 | |
# adjust acoustic module learning rate | |
for module in ["decoder", "style_encoder"]: | |
for g in optimizer.optimizers[module].param_groups: | |
g['betas'] = (0.0, 0.99) | |
g['lr'] = optimizer_params.ft_lr | |
g['initial_lr'] = optimizer_params.ft_lr | |
g['min_lr'] = 0 | |
g['weight_decay'] = 1e-4 | |
# load models if there is a model | |
if load_pretrained: | |
model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'], | |
load_only_params=config.get('load_only_params', True)) | |
n_down = model.text_aligner.n_down | |
best_loss = float('inf') # best test loss | |
loss_train_record = list([]) | |
loss_test_record = list([]) | |
iters = 0 | |
criterion = nn.L1Loss() # F0 loss (regression) | |
torch.cuda.empty_cache() | |
stft_loss = MultiResolutionSTFTLoss().to(device) | |
print('BERT', optimizer.optimizers['bert']) | |
print('decoder', optimizer.optimizers['decoder']) | |
start_ds = False | |
running_std = [] | |
slmadv_params = Munch(config['slmadv_params']) | |
slmadv = SLMAdversarialLoss(model, wl, sampler, | |
slmadv_params.min_len, | |
slmadv_params.max_len, | |
batch_percentage=slmadv_params.batch_percentage, | |
skip_update=slmadv_params.iter, | |
sig=slmadv_params.sig | |
) | |
for epoch in range(start_epoch, epochs): | |
running_loss = 0 | |
start_time = time.time() | |
_ = [model[key].eval() for key in model] | |
model.predictor.train() | |
model.bert_encoder.train() | |
model.bert.train() | |
model.msd.train() | |
model.mpd.train() | |
if epoch >= diff_epoch: | |
start_ds = True | |
for i, batch in enumerate(train_dataloader): | |
waves = batch[0] | |
batch = [b.to(device) for b in batch[1:]] | |
texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch | |
with torch.no_grad(): | |
mask = length_to_mask(mel_input_length // (2 ** n_down)).to(device) | |
mel_mask = length_to_mask(mel_input_length).to(device) | |
text_mask = length_to_mask(input_lengths).to(texts.device) | |
try: | |
_, _, s2s_attn = model.text_aligner(mels, mask, texts) | |
s2s_attn = s2s_attn.transpose(-1, -2) | |
s2s_attn = s2s_attn[..., 1:] | |
s2s_attn = s2s_attn.transpose(-1, -2) | |
except: | |
continue | |
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down)) | |
s2s_attn_mono = maximum_path(s2s_attn, mask_ST) | |
# encode | |
t_en = model.text_encoder(texts, input_lengths, text_mask) | |
asr = (t_en @ s2s_attn_mono) | |
d_gt = s2s_attn_mono.sum(axis=-1).detach() | |
# compute reference styles | |
if multispeaker and epoch >= diff_epoch: | |
ref_ss = model.style_encoder(ref_mels.unsqueeze(1)) | |
ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1)) | |
ref = torch.cat([ref_ss, ref_sp], dim=1) | |
# compute the style of the entire utterance | |
# this operation cannot be done in batch because of the avgpool layer (may need to work on masked avgpool) | |
ss = [] | |
gs = [] | |
for bib in range(len(mel_input_length)): | |
mel_length = int(mel_input_length[bib].item()) | |
mel = mels[bib, :, :mel_input_length[bib]] | |
s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1)) | |
ss.append(s) | |
s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1)) | |
gs.append(s) | |
s_dur = torch.stack(ss).squeeze() # global prosodic styles | |
gs = torch.stack(gs).squeeze() # global acoustic styles | |
s_trg = torch.cat([gs, s_dur], dim=-1).detach() # ground truth for denoiser | |
bert_dur = model.bert(texts, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
# denoiser training | |
if epoch >= diff_epoch: | |
num_steps = np.random.randint(3, 5) | |
if model_params.diffusion.dist.estimate_sigma_data: | |
model.diffusion.module.diffusion.sigma_data = s_trg.std(axis=-1).mean().item() # batch-wise std estimation | |
running_std.append(model.diffusion.module.diffusion.sigma_data) | |
if multispeaker: | |
s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device), | |
embedding=bert_dur, | |
embedding_scale=1, | |
features=ref, # reference from the same speaker as the embedding | |
embedding_mask_proba=0.1, | |
num_steps=num_steps).squeeze(1) | |
loss_diff = model.diffusion(s_trg.unsqueeze(1), embedding=bert_dur, features=ref).mean() # EDM loss | |
loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss | |
else: | |
s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device), | |
embedding=bert_dur, | |
embedding_scale=1, | |
embedding_mask_proba=0.1, | |
num_steps=num_steps).squeeze(1) | |
loss_diff = model.diffusion.module.diffusion(s_trg.unsqueeze(1), embedding=bert_dur).mean() # EDM loss | |
loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss | |
else: | |
loss_sty = 0 | |
loss_diff = 0 | |
d, p = model.predictor(d_en, s_dur, | |
input_lengths, | |
s2s_attn_mono, | |
text_mask) | |
mel_len = min(int(mel_input_length.min().item() / 2 - 1), max_len // 2) | |
mel_len_st = int(mel_input_length.min().item() / 2 - 1) | |
en = [] | |
gt = [] | |
st = [] | |
p_en = [] | |
wav = [] | |
for bib in range(len(mel_input_length)): | |
mel_length = int(mel_input_length[bib].item() / 2) | |
random_start = np.random.randint(0, mel_length - mel_len) | |
en.append(asr[bib, :, random_start:random_start+mel_len]) | |
p_en.append(p[bib, :, random_start:random_start+mel_len]) | |
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)]) | |
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300] | |
wav.append(torch.from_numpy(y).to(device)) | |
# style reference (better to be different from the GT) | |
random_start = np.random.randint(0, mel_length - mel_len_st) | |
st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)]) | |
wav = torch.stack(wav).float().detach() | |
en = torch.stack(en) | |
p_en = torch.stack(p_en) | |
gt = torch.stack(gt).detach() | |
st = torch.stack(st).detach() | |
if gt.size(-1) < 80: | |
continue | |
s_dur = model.predictor_encoder(st.unsqueeze(1) if multispeaker else gt.unsqueeze(1)) | |
s = model.style_encoder(st.unsqueeze(1) if multispeaker else gt.unsqueeze(1)) | |
with torch.no_grad(): | |
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) | |
F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze() | |
asr_real = model.text_aligner.get_feature(gt) | |
N_real = log_norm(gt.unsqueeze(1)).squeeze(1) | |
y_rec_gt = wav.unsqueeze(1) | |
y_rec_gt_pred = model.decoder(en, F0_real, N_real, s) | |
if epoch >= joint_epoch: | |
# ground truth from recording | |
wav = y_rec_gt # use recording since decoder is tuned | |
else: | |
# ground truth from reconstruction | |
wav = y_rec_gt_pred # use reconstruction since decoder is fixed | |
F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur) | |
y_rec = model.decoder(en, F0_fake, N_fake, s) | |
loss_F0_rec = (F.smooth_l1_loss(F0_real, F0_fake)) / 10 | |
loss_norm_rec = F.smooth_l1_loss(N_real, N_fake) | |
if start_ds: | |
optimizer.zero_grad() | |
d_loss = dl(wav.detach(), y_rec.detach()).mean() | |
d_loss.backward() | |
optimizer.step('msd') | |
optimizer.step('mpd') | |
else: | |
d_loss = 0 | |
# generator loss | |
optimizer.zero_grad() | |
loss_mel = stft_loss(y_rec, wav) | |
if start_ds: | |
loss_gen_all = gl(wav, y_rec).mean() | |
else: | |
loss_gen_all = 0 | |
loss_lm = wl(wav.detach().squeeze(), y_rec.squeeze()).mean() | |
loss_ce = 0 | |
loss_dur = 0 | |
for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths): | |
_s2s_pred = _s2s_pred[:_text_length, :] | |
_text_input = _text_input[:_text_length].long() | |
_s2s_trg = torch.zeros_like(_s2s_pred) | |
for p in range(_s2s_trg.shape[0]): | |
_s2s_trg[p, :_text_input[p]] = 1 | |
_dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1) | |
loss_dur += F.l1_loss(_dur_pred[1:_text_length-1], | |
_text_input[1:_text_length-1]) | |
loss_ce += F.binary_cross_entropy_with_logits(_s2s_pred.flatten(), _s2s_trg.flatten()) | |
loss_ce /= texts.size(0) | |
loss_dur /= texts.size(0) | |
g_loss = loss_params.lambda_mel * loss_mel + \ | |
loss_params.lambda_F0 * loss_F0_rec + \ | |
loss_params.lambda_ce * loss_ce + \ | |
loss_params.lambda_norm * loss_norm_rec + \ | |
loss_params.lambda_dur * loss_dur + \ | |
loss_params.lambda_gen * loss_gen_all + \ | |
loss_params.lambda_slm * loss_lm + \ | |
loss_params.lambda_sty * loss_sty + \ | |
loss_params.lambda_diff * loss_diff | |
running_loss += loss_mel.item() | |
g_loss.backward() | |
if torch.isnan(g_loss): | |
from IPython.core.debugger import set_trace | |
set_trace() | |
optimizer.step('bert_encoder') | |
optimizer.step('bert') | |
optimizer.step('predictor') | |
optimizer.step('predictor_encoder') | |
if epoch >= diff_epoch: | |
optimizer.step('diffusion') | |
if epoch >= joint_epoch: | |
optimizer.step('style_encoder') | |
optimizer.step('decoder') | |
# randomly pick whether to use in-distribution text | |
if np.random.rand() < 0.5: | |
use_ind = True | |
else: | |
use_ind = False | |
if use_ind: | |
ref_lengths = input_lengths | |
ref_texts = texts | |
slm_out = slmadv(i, | |
y_rec_gt, | |
y_rec_gt_pred, | |
waves, | |
mel_input_length, | |
ref_texts, | |
ref_lengths, use_ind, s_trg.detach(), ref if multispeaker else None) | |
if slm_out is None: | |
continue | |
d_loss_slm, loss_gen_lm, y_pred = slm_out | |
# SLM generator loss | |
optimizer.zero_grad() | |
loss_gen_lm.backward() | |
# SLM discriminator loss | |
if d_loss_slm != 0: | |
optimizer.zero_grad() | |
d_loss_slm.backward(retain_graph=True) | |
optimizer.step('wd') | |
# compute the gradient norm | |
total_norm = {} | |
for key in model.keys(): | |
total_norm[key] = 0 | |
parameters = [p for p in model[key].parameters() if p.grad is not None and p.requires_grad] | |
for p in parameters: | |
param_norm = p.grad.detach().data.norm(2) | |
total_norm[key] += param_norm.item() ** 2 | |
total_norm[key] = total_norm[key] ** 0.5 | |
# gradient scaling | |
if total_norm['predictor'] > slmadv_params.thresh: | |
for key in model.keys(): | |
for p in model[key].parameters(): | |
if p.grad is not None: | |
p.grad *= (1 / total_norm['predictor']) | |
for p in model.predictor.duration_proj.parameters(): | |
if p.grad is not None: | |
p.grad *= slmadv_params.scale | |
for p in model.predictor.lstm.parameters(): | |
if p.grad is not None: | |
p.grad *= slmadv_params.scale | |
for p in model.diffusion.parameters(): | |
if p.grad is not None: | |
p.grad *= slmadv_params.scale | |
optimizer.step('bert_encoder') | |
optimizer.step('bert') | |
optimizer.step('predictor') | |
optimizer.step('diffusion') | |
else: | |
d_loss_slm, loss_gen_lm = 0, 0 | |
iters = iters + 1 | |
if (i+1)%log_interval == 0: | |
logger.info ('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f' | |
%(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, d_loss, loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff, d_loss_slm, loss_gen_lm)) | |
writer.add_scalar('train/mel_loss', running_loss / log_interval, iters) | |
writer.add_scalar('train/gen_loss', loss_gen_all, iters) | |
writer.add_scalar('train/d_loss', d_loss, iters) | |
writer.add_scalar('train/ce_loss', loss_ce, iters) | |
writer.add_scalar('train/dur_loss', loss_dur, iters) | |
writer.add_scalar('train/slm_loss', loss_lm, iters) | |
writer.add_scalar('train/norm_loss', loss_norm_rec, iters) | |
writer.add_scalar('train/F0_loss', loss_F0_rec, iters) | |
writer.add_scalar('train/sty_loss', loss_sty, iters) | |
writer.add_scalar('train/diff_loss', loss_diff, iters) | |
writer.add_scalar('train/d_loss_slm', d_loss_slm, iters) | |
writer.add_scalar('train/gen_loss_slm', loss_gen_lm, iters) | |
running_loss = 0 | |
print('Time elasped:', time.time()-start_time) | |
loss_test = 0 | |
loss_align = 0 | |
loss_f = 0 | |
_ = [model[key].eval() for key in model] | |
with torch.no_grad(): | |
iters_test = 0 | |
for batch_idx, batch in enumerate(val_dataloader): | |
optimizer.zero_grad() | |
try: | |
waves = batch[0] | |
batch = [b.to(device) for b in batch[1:]] | |
texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch | |
with torch.no_grad(): | |
mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda') | |
text_mask = length_to_mask(input_lengths).to(texts.device) | |
_, _, s2s_attn = model.text_aligner(mels, mask, texts) | |
s2s_attn = s2s_attn.transpose(-1, -2) | |
s2s_attn = s2s_attn[..., 1:] | |
s2s_attn = s2s_attn.transpose(-1, -2) | |
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down)) | |
s2s_attn_mono = maximum_path(s2s_attn, mask_ST) | |
# encode | |
t_en = model.text_encoder(texts, input_lengths, text_mask) | |
asr = (t_en @ s2s_attn_mono) | |
d_gt = s2s_attn_mono.sum(axis=-1).detach() | |
ss = [] | |
gs = [] | |
for bib in range(len(mel_input_length)): | |
mel_length = int(mel_input_length[bib].item()) | |
mel = mels[bib, :, :mel_input_length[bib]] | |
s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1)) | |
ss.append(s) | |
s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1)) | |
gs.append(s) | |
s = torch.stack(ss).squeeze() | |
gs = torch.stack(gs).squeeze() | |
s_trg = torch.cat([s, gs], dim=-1).detach() | |
bert_dur = model.bert(texts, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
d, p = model.predictor(d_en, s, | |
input_lengths, | |
s2s_attn_mono, | |
text_mask) | |
# get clips | |
mel_len = int(mel_input_length.min().item() / 2 - 1) | |
en = [] | |
gt = [] | |
p_en = [] | |
wav = [] | |
for bib in range(len(mel_input_length)): | |
mel_length = int(mel_input_length[bib].item() / 2) | |
random_start = np.random.randint(0, mel_length - mel_len) | |
en.append(asr[bib, :, random_start:random_start+mel_len]) | |
p_en.append(p[bib, :, random_start:random_start+mel_len]) | |
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)]) | |
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300] | |
wav.append(torch.from_numpy(y).to(device)) | |
wav = torch.stack(wav).float().detach() | |
en = torch.stack(en) | |
p_en = torch.stack(p_en) | |
gt = torch.stack(gt).detach() | |
s = model.predictor_encoder(gt.unsqueeze(1)) | |
F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s) | |
loss_dur = 0 | |
for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths): | |
_s2s_pred = _s2s_pred[:_text_length, :] | |
_text_input = _text_input[:_text_length].long() | |
_s2s_trg = torch.zeros_like(_s2s_pred) | |
for bib in range(_s2s_trg.shape[0]): | |
_s2s_trg[bib, :_text_input[bib]] = 1 | |
_dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1) | |
loss_dur += F.l1_loss(_dur_pred[1:_text_length-1], | |
_text_input[1:_text_length-1]) | |
loss_dur /= texts.size(0) | |
s = model.style_encoder(gt.unsqueeze(1)) | |
y_rec = model.decoder(en, F0_fake, N_fake, s) | |
loss_mel = stft_loss(y_rec.squeeze(), wav.detach()) | |
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) | |
loss_F0 = F.l1_loss(F0_real, F0_fake) / 10 | |
loss_test += (loss_mel).mean() | |
loss_align += (loss_dur).mean() | |
loss_f += (loss_F0).mean() | |
iters_test += 1 | |
except: | |
continue | |
print('Epochs:', epoch + 1) | |
logger.info('Validation loss: %.3f, Dur loss: %.3f, F0 loss: %.3f' % (loss_test / iters_test, loss_align / iters_test, loss_f / iters_test) + '\n\n\n') | |
print('\n\n\n') | |
writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1) | |
writer.add_scalar('eval/dur_loss', loss_test / iters_test, epoch + 1) | |
writer.add_scalar('eval/F0_loss', loss_f / iters_test, epoch + 1) | |
if epoch < joint_epoch: | |
# generating reconstruction examples with GT duration | |
with torch.no_grad(): | |
for bib in range(len(asr)): | |
mel_length = int(mel_input_length[bib].item()) | |
gt = mels[bib, :, :mel_length].unsqueeze(0) | |
en = asr[bib, :, :mel_length // 2].unsqueeze(0) | |
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1)) | |
F0_real = F0_real.unsqueeze(0) | |
s = model.style_encoder(gt.unsqueeze(1)) | |
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1) | |
y_rec = model.decoder(en, F0_real, real_norm, s) | |
writer.add_audio('eval/y' + str(bib), y_rec.cpu().numpy().squeeze(), epoch, sample_rate=sr) | |
s_dur = model.predictor_encoder(gt.unsqueeze(1)) | |
p_en = p[bib, :, :mel_length // 2].unsqueeze(0) | |
F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur) | |
y_pred = model.decoder(en, F0_fake, N_fake, s) | |
writer.add_audio('pred/y' + str(bib), y_pred.cpu().numpy().squeeze(), epoch, sample_rate=sr) | |
if epoch == 0: | |
writer.add_audio('gt/y' + str(bib), waves[bib].squeeze(), epoch, sample_rate=sr) | |
if bib >= 5: | |
break | |
else: | |
# generating sampled speech from text directly | |
with torch.no_grad(): | |
# compute reference styles | |
if multispeaker and epoch >= diff_epoch: | |
ref_ss = model.style_encoder(ref_mels.unsqueeze(1)) | |
ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1)) | |
ref_s = torch.cat([ref_ss, ref_sp], dim=1) | |
for bib in range(len(d_en)): | |
if multispeaker: | |
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(texts.device), | |
embedding=bert_dur[bib].unsqueeze(0), | |
embedding_scale=1, | |
features=ref_s[bib].unsqueeze(0), # reference from the same speaker as the embedding | |
num_steps=5).squeeze(1) | |
else: | |
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(texts.device), | |
embedding=bert_dur[bib].unsqueeze(0), | |
embedding_scale=1, | |
num_steps=5).squeeze(1) | |
s = s_pred[:, 128:] | |
ref = s_pred[:, :128] | |
d = model.predictor.text_encoder(d_en[bib, :, :input_lengths[bib]].unsqueeze(0), | |
s, input_lengths[bib, ...].unsqueeze(0), text_mask[bib, :input_lengths[bib]].unsqueeze(0)) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
pred_dur[-1] += 5 | |
pred_aln_trg = torch.zeros(input_lengths[bib], int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
# encode prosody | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(texts.device)) | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
out = model.decoder((t_en[bib, :, :input_lengths[bib]].unsqueeze(0) @ pred_aln_trg.unsqueeze(0).to(texts.device)), | |
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
writer.add_audio('pred/y' + str(bib), out.cpu().numpy().squeeze(), epoch, sample_rate=sr) | |
if bib >= 5: | |
break | |
if epoch % saving_epoch == 0: | |
if (loss_test / iters_test) < best_loss: | |
best_loss = loss_test / iters_test | |
print('Saving..') | |
state = { | |
'net': {key: model[key].state_dict() for key in model}, | |
'optimizer': optimizer.state_dict(), | |
'iters': iters, | |
'val_loss': loss_test / iters_test, | |
'epoch': epoch, | |
} | |
save_path = osp.join(log_dir, 'epoch_2nd_%05d.pth' % epoch) | |
torch.save(state, save_path) | |
# if estimate sigma, save the estimated simga | |
if model_params.diffusion.dist.estimate_sigma_data: | |
config['model_params']['diffusion']['dist']['sigma_data'] = float(np.mean(running_std)) | |
with open(osp.join(log_dir, osp.basename(config_path)), 'w') as outfile: | |
yaml.dump(config, outfile, default_flow_style=True) | |
if __name__=="__main__": | |
main() | |