Spaces:
Runtime error
Runtime error
initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- Configs/config.yml +116 -0
- Configs/config_ft.yml +111 -0
- Configs/config_libritts.yml +113 -0
- Data/OOD_texts.txt +3 -0
- Data/train_list.txt +0 -0
- Data/val_list.txt +100 -0
- Models/LibriTTS/config.yml +21 -0
- Models/LibriTTS/epochs_2nd_00020.pth +3 -0
- Modules/__init__.py +1 -0
- Modules/__pycache__/__init__.cpython-311.pyc +0 -0
- Modules/__pycache__/discriminators.cpython-311.pyc +0 -0
- Modules/__pycache__/hifigan.cpython-311.pyc +0 -0
- Modules/__pycache__/istftnet.cpython-311.pyc +0 -0
- Modules/__pycache__/utils.cpython-311.pyc +0 -0
- Modules/diffusion/__init__.py +1 -0
- Modules/diffusion/__pycache__/__init__.cpython-311.pyc +0 -0
- Modules/diffusion/__pycache__/diffusion.cpython-311.pyc +0 -0
- Modules/diffusion/__pycache__/modules.cpython-311.pyc +0 -0
- Modules/diffusion/__pycache__/sampler.cpython-311.pyc +0 -0
- Modules/diffusion/__pycache__/utils.cpython-311.pyc +0 -0
- Modules/diffusion/diffusion.py +94 -0
- Modules/diffusion/modules.py +693 -0
- Modules/diffusion/sampler.py +691 -0
- Modules/diffusion/utils.py +82 -0
- Modules/discriminators.py +188 -0
- Modules/hifigan.py +477 -0
- Modules/istftnet.py +530 -0
- Modules/slmadv.py +195 -0
- Modules/utils.py +14 -0
- Utils/ASR/__init__.py +1 -0
- Utils/ASR/__pycache__/__init__.cpython-311.pyc +0 -0
- Utils/ASR/__pycache__/layers.cpython-311.pyc +0 -0
- Utils/ASR/__pycache__/models.cpython-311.pyc +0 -0
- Utils/ASR/config.yml +29 -0
- Utils/ASR/epoch_00080.pth +3 -0
- Utils/ASR/layers.py +354 -0
- Utils/ASR/models.py +186 -0
- Utils/JDC/__init__.py +1 -0
- Utils/JDC/__pycache__/__init__.cpython-311.pyc +0 -0
- Utils/JDC/__pycache__/model.cpython-311.pyc +0 -0
- Utils/JDC/bst.t7 +3 -0
- Utils/JDC/model.py +190 -0
- Utils/PLBERT/__pycache__/util.cpython-311.pyc +0 -0
- Utils/PLBERT/config.yml +30 -0
- Utils/PLBERT/step_1000000.t7 +3 -0
- Utils/PLBERT/util.py +42 -0
- Utils/__init__.py +1 -0
- Utils/__pycache__/__init__.cpython-311.pyc +0 -0
- __pycache__/accent_gradio.cpython-311.pyc +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Data/OOD_texts.txt filter=lfs diff=lfs merge=lfs -text
|
37 |
+
original_voice.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
+
Utils/JDC/bst.t7 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
Utils/PLBERT/step_1000000.t7 filter=lfs diff=lfs merge=lfs -text
|
Configs/config.yml
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
log_dir: "Models/LJSpeech"
|
2 |
+
first_stage_path: "first_stage.pth"
|
3 |
+
save_freq: 2
|
4 |
+
log_interval: 10
|
5 |
+
device: "cuda"
|
6 |
+
epochs_1st: 200 # number of epochs for first stage training (pre-training)
|
7 |
+
epochs_2nd: 100 # number of peochs for second stage training (joint training)
|
8 |
+
batch_size: 16
|
9 |
+
max_len: 400 # maximum number of frames
|
10 |
+
pretrained_model: ""
|
11 |
+
second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
|
12 |
+
load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters
|
13 |
+
|
14 |
+
F0_path: "Utils/JDC/bst.t7"
|
15 |
+
ASR_config: "Utils/ASR/config.yml"
|
16 |
+
ASR_path: "Utils/ASR/epoch_00080.pth"
|
17 |
+
PLBERT_dir: 'Utils/PLBERT/'
|
18 |
+
|
19 |
+
data_params:
|
20 |
+
train_data: "Data/train_list.txt"
|
21 |
+
val_data: "Data/val_list.txt"
|
22 |
+
root_path: "/local/LJSpeech-1.1/wavs"
|
23 |
+
OOD_data: "Data/OOD_texts.txt"
|
24 |
+
min_length: 50 # sample until texts with this size are obtained for OOD texts
|
25 |
+
|
26 |
+
preprocess_params:
|
27 |
+
sr: 24000
|
28 |
+
spect_params:
|
29 |
+
n_fft: 2048
|
30 |
+
win_length: 1200
|
31 |
+
hop_length: 300
|
32 |
+
|
33 |
+
model_params:
|
34 |
+
multispeaker: false
|
35 |
+
|
36 |
+
dim_in: 64
|
37 |
+
hidden_dim: 512
|
38 |
+
max_conv_dim: 512
|
39 |
+
n_layer: 3
|
40 |
+
n_mels: 80
|
41 |
+
|
42 |
+
n_token: 178 # number of phoneme tokens
|
43 |
+
max_dur: 50 # maximum duration of a single phoneme
|
44 |
+
style_dim: 128 # style vector size
|
45 |
+
|
46 |
+
dropout: 0.2
|
47 |
+
|
48 |
+
# config for decoder
|
49 |
+
decoder:
|
50 |
+
type: 'istftnet' # either hifigan or istftnet
|
51 |
+
resblock_kernel_sizes: [3,7,11]
|
52 |
+
upsample_rates : [10, 6]
|
53 |
+
upsample_initial_channel: 512
|
54 |
+
resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
|
55 |
+
upsample_kernel_sizes: [20, 12]
|
56 |
+
gen_istft_n_fft: 20
|
57 |
+
gen_istft_hop_size: 5
|
58 |
+
|
59 |
+
# speech language model config
|
60 |
+
slm:
|
61 |
+
model: 'microsoft/wavlm-base-plus'
|
62 |
+
sr: 16000 # sampling rate of SLM
|
63 |
+
hidden: 768 # hidden size of SLM
|
64 |
+
nlayers: 13 # number of layers of SLM
|
65 |
+
initial_channel: 64 # initial channels of SLM discriminator head
|
66 |
+
|
67 |
+
# style diffusion model config
|
68 |
+
diffusion:
|
69 |
+
embedding_mask_proba: 0.1
|
70 |
+
# transformer config
|
71 |
+
transformer:
|
72 |
+
num_layers: 3
|
73 |
+
num_heads: 8
|
74 |
+
head_features: 64
|
75 |
+
multiplier: 2
|
76 |
+
|
77 |
+
# diffusion distribution config
|
78 |
+
dist:
|
79 |
+
sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
|
80 |
+
estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
|
81 |
+
mean: -3.0
|
82 |
+
std: 1.0
|
83 |
+
|
84 |
+
loss_params:
|
85 |
+
lambda_mel: 5. # mel reconstruction loss
|
86 |
+
lambda_gen: 1. # generator loss
|
87 |
+
lambda_slm: 1. # slm feature matching loss
|
88 |
+
|
89 |
+
lambda_mono: 1. # monotonic alignment loss (1st stage, TMA)
|
90 |
+
lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA)
|
91 |
+
TMA_epoch: 50 # TMA starting epoch (1st stage)
|
92 |
+
|
93 |
+
lambda_F0: 1. # F0 reconstruction loss (2nd stage)
|
94 |
+
lambda_norm: 1. # norm reconstruction loss (2nd stage)
|
95 |
+
lambda_dur: 1. # duration loss (2nd stage)
|
96 |
+
lambda_ce: 20. # duration predictor probability output CE loss (2nd stage)
|
97 |
+
lambda_sty: 1. # style reconstruction loss (2nd stage)
|
98 |
+
lambda_diff: 1. # score matching loss (2nd stage)
|
99 |
+
|
100 |
+
diff_epoch: 20 # style diffusion starting epoch (2nd stage)
|
101 |
+
joint_epoch: 50 # joint training starting epoch (2nd stage)
|
102 |
+
|
103 |
+
optimizer_params:
|
104 |
+
lr: 0.0001 # general learning rate
|
105 |
+
bert_lr: 0.00001 # learning rate for PLBERT
|
106 |
+
ft_lr: 0.00001 # learning rate for acoustic modules
|
107 |
+
|
108 |
+
slmadv_params:
|
109 |
+
min_len: 400 # minimum length of samples
|
110 |
+
max_len: 500 # maximum length of samples
|
111 |
+
batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
|
112 |
+
iter: 10 # update the discriminator every this iterations of generator update
|
113 |
+
thresh: 5 # gradient norm above which the gradient is scaled
|
114 |
+
scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
|
115 |
+
sig: 1.5 # sigma for differentiable duration modeling
|
116 |
+
|
Configs/config_ft.yml
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
log_dir: "Models/LJSpeech"
|
2 |
+
save_freq: 5
|
3 |
+
log_interval: 10
|
4 |
+
device: "cuda"
|
5 |
+
epochs: 50 # number of finetuning epoch (1 hour of data)
|
6 |
+
batch_size: 8
|
7 |
+
max_len: 400 # maximum number of frames
|
8 |
+
pretrained_model: "Models/LibriTTS/epochs_2nd_00020.pth"
|
9 |
+
second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
|
10 |
+
load_only_params: true # set to true if do not want to load epoch numbers and optimizer parameters
|
11 |
+
|
12 |
+
F0_path: "Utils/JDC/bst.t7"
|
13 |
+
ASR_config: "Utils/ASR/config.yml"
|
14 |
+
ASR_path: "Utils/ASR/epoch_00080.pth"
|
15 |
+
PLBERT_dir: 'Utils/PLBERT/'
|
16 |
+
|
17 |
+
data_params:
|
18 |
+
train_data: "Data/train_list.txt"
|
19 |
+
val_data: "Data/val_list.txt"
|
20 |
+
root_path: "/local/LJSpeech-1.1/wavs"
|
21 |
+
OOD_data: "Data/OOD_texts.txt"
|
22 |
+
min_length: 50 # sample until texts with this size are obtained for OOD texts
|
23 |
+
|
24 |
+
preprocess_params:
|
25 |
+
sr: 24000
|
26 |
+
spect_params:
|
27 |
+
n_fft: 2048
|
28 |
+
win_length: 1200
|
29 |
+
hop_length: 300
|
30 |
+
|
31 |
+
model_params:
|
32 |
+
multispeaker: true
|
33 |
+
|
34 |
+
dim_in: 64
|
35 |
+
hidden_dim: 512
|
36 |
+
max_conv_dim: 512
|
37 |
+
n_layer: 3
|
38 |
+
n_mels: 80
|
39 |
+
|
40 |
+
n_token: 178 # number of phoneme tokens
|
41 |
+
max_dur: 50 # maximum duration of a single phoneme
|
42 |
+
style_dim: 128 # style vector size
|
43 |
+
|
44 |
+
dropout: 0.2
|
45 |
+
|
46 |
+
# config for decoder
|
47 |
+
decoder:
|
48 |
+
type: 'hifigan' # either hifigan or istftnet
|
49 |
+
resblock_kernel_sizes: [3,7,11]
|
50 |
+
upsample_rates : [10,5,3,2]
|
51 |
+
upsample_initial_channel: 512
|
52 |
+
resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
|
53 |
+
upsample_kernel_sizes: [20,10,6,4]
|
54 |
+
|
55 |
+
# speech language model config
|
56 |
+
slm:
|
57 |
+
model: 'microsoft/wavlm-base-plus'
|
58 |
+
sr: 16000 # sampling rate of SLM
|
59 |
+
hidden: 768 # hidden size of SLM
|
60 |
+
nlayers: 13 # number of layers of SLM
|
61 |
+
initial_channel: 64 # initial channels of SLM discriminator head
|
62 |
+
|
63 |
+
# style diffusion model config
|
64 |
+
diffusion:
|
65 |
+
embedding_mask_proba: 0.1
|
66 |
+
# transformer config
|
67 |
+
transformer:
|
68 |
+
num_layers: 3
|
69 |
+
num_heads: 8
|
70 |
+
head_features: 64
|
71 |
+
multiplier: 2
|
72 |
+
|
73 |
+
# diffusion distribution config
|
74 |
+
dist:
|
75 |
+
sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
|
76 |
+
estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
|
77 |
+
mean: -3.0
|
78 |
+
std: 1.0
|
79 |
+
|
80 |
+
loss_params:
|
81 |
+
lambda_mel: 5. # mel reconstruction loss
|
82 |
+
lambda_gen: 1. # generator loss
|
83 |
+
lambda_slm: 1. # slm feature matching loss
|
84 |
+
|
85 |
+
lambda_mono: 1. # monotonic alignment loss (TMA)
|
86 |
+
lambda_s2s: 1. # sequence-to-sequence loss (TMA)
|
87 |
+
|
88 |
+
lambda_F0: 1. # F0 reconstruction loss
|
89 |
+
lambda_norm: 1. # norm reconstruction loss
|
90 |
+
lambda_dur: 1. # duration loss
|
91 |
+
lambda_ce: 20. # duration predictor probability output CE loss
|
92 |
+
lambda_sty: 1. # style reconstruction loss
|
93 |
+
lambda_diff: 1. # score matching loss
|
94 |
+
|
95 |
+
diff_epoch: 10 # style diffusion starting epoch
|
96 |
+
joint_epoch: 30 # joint training starting epoch
|
97 |
+
|
98 |
+
optimizer_params:
|
99 |
+
lr: 0.0001 # general learning rate
|
100 |
+
bert_lr: 0.00001 # learning rate for PLBERT
|
101 |
+
ft_lr: 0.0001 # learning rate for acoustic modules
|
102 |
+
|
103 |
+
slmadv_params:
|
104 |
+
min_len: 400 # minimum length of samples
|
105 |
+
max_len: 500 # maximum length of samples
|
106 |
+
batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
|
107 |
+
iter: 10 # update the discriminator every this iterations of generator update
|
108 |
+
thresh: 5 # gradient norm above which the gradient is scaled
|
109 |
+
scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
|
110 |
+
sig: 1.5 # sigma for differentiable duration modeling
|
111 |
+
|
Configs/config_libritts.yml
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
log_dir: "Models/LibriTTS"
|
2 |
+
first_stage_path: "first_stage.pth"
|
3 |
+
save_freq: 1
|
4 |
+
log_interval: 10
|
5 |
+
device: "cuda"
|
6 |
+
epochs_1st: 50 # number of epochs for first stage training (pre-training)
|
7 |
+
epochs_2nd: 30 # number of peochs for second stage training (joint training)
|
8 |
+
batch_size: 16
|
9 |
+
max_len: 300 # maximum number of frames
|
10 |
+
pretrained_model: ""
|
11 |
+
second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
|
12 |
+
load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters
|
13 |
+
|
14 |
+
F0_path: "Utils/JDC/bst.t7"
|
15 |
+
ASR_config: "Utils/ASR/config.yml"
|
16 |
+
ASR_path: "Utils/ASR/epoch_00080.pth"
|
17 |
+
PLBERT_dir: 'Utils/PLBERT/'
|
18 |
+
|
19 |
+
data_params:
|
20 |
+
train_data: "Data/train_list.txt"
|
21 |
+
val_data: "Data/val_list.txt"
|
22 |
+
root_path: ""
|
23 |
+
OOD_data: "Data/OOD_texts.txt"
|
24 |
+
min_length: 50 # sample until texts with this size are obtained for OOD texts
|
25 |
+
|
26 |
+
preprocess_params:
|
27 |
+
sr: 24000
|
28 |
+
spect_params:
|
29 |
+
n_fft: 2048
|
30 |
+
win_length: 1200
|
31 |
+
hop_length: 300
|
32 |
+
|
33 |
+
model_params:
|
34 |
+
multispeaker: true
|
35 |
+
|
36 |
+
dim_in: 64
|
37 |
+
hidden_dim: 512
|
38 |
+
max_conv_dim: 512
|
39 |
+
n_layer: 3
|
40 |
+
n_mels: 80
|
41 |
+
|
42 |
+
n_token: 178 # number of phoneme tokens
|
43 |
+
max_dur: 50 # maximum duration of a single phoneme
|
44 |
+
style_dim: 128 # style vector size
|
45 |
+
|
46 |
+
dropout: 0.2
|
47 |
+
|
48 |
+
# config for decoder
|
49 |
+
decoder:
|
50 |
+
type: 'hifigan' # either hifigan or istftnet
|
51 |
+
resblock_kernel_sizes: [3,7,11]
|
52 |
+
upsample_rates : [10,5,3,2]
|
53 |
+
upsample_initial_channel: 512
|
54 |
+
resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
|
55 |
+
upsample_kernel_sizes: [20,10,6,4]
|
56 |
+
|
57 |
+
# speech language model config
|
58 |
+
slm:
|
59 |
+
model: 'microsoft/wavlm-base-plus'
|
60 |
+
sr: 16000 # sampling rate of SLM
|
61 |
+
hidden: 768 # hidden size of SLM
|
62 |
+
nlayers: 13 # number of layers of SLM
|
63 |
+
initial_channel: 64 # initial channels of SLM discriminator head
|
64 |
+
|
65 |
+
# style diffusion model config
|
66 |
+
diffusion:
|
67 |
+
embedding_mask_proba: 0.1
|
68 |
+
# transformer config
|
69 |
+
transformer:
|
70 |
+
num_layers: 3
|
71 |
+
num_heads: 8
|
72 |
+
head_features: 64
|
73 |
+
multiplier: 2
|
74 |
+
|
75 |
+
# diffusion distribution config
|
76 |
+
dist:
|
77 |
+
sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
|
78 |
+
estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
|
79 |
+
mean: -3.0
|
80 |
+
std: 1.0
|
81 |
+
|
82 |
+
loss_params:
|
83 |
+
lambda_mel: 5. # mel reconstruction loss
|
84 |
+
lambda_gen: 1. # generator loss
|
85 |
+
lambda_slm: 1. # slm feature matching loss
|
86 |
+
|
87 |
+
lambda_mono: 1. # monotonic alignment loss (1st stage, TMA)
|
88 |
+
lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA)
|
89 |
+
TMA_epoch: 5 # TMA starting epoch (1st stage)
|
90 |
+
|
91 |
+
lambda_F0: 1. # F0 reconstruction loss (2nd stage)
|
92 |
+
lambda_norm: 1. # norm reconstruction loss (2nd stage)
|
93 |
+
lambda_dur: 1. # duration loss (2nd stage)
|
94 |
+
lambda_ce: 20. # duration predictor probability output CE loss (2nd stage)
|
95 |
+
lambda_sty: 1. # style reconstruction loss (2nd stage)
|
96 |
+
lambda_diff: 1. # score matching loss (2nd stage)
|
97 |
+
|
98 |
+
diff_epoch: 10 # style diffusion starting epoch (2nd stage)
|
99 |
+
joint_epoch: 15 # joint training starting epoch (2nd stage)
|
100 |
+
|
101 |
+
optimizer_params:
|
102 |
+
lr: 0.0001 # general learning rate
|
103 |
+
bert_lr: 0.00001 # learning rate for PLBERT
|
104 |
+
ft_lr: 0.00001 # learning rate for acoustic modules
|
105 |
+
|
106 |
+
slmadv_params:
|
107 |
+
min_len: 400 # minimum length of samples
|
108 |
+
max_len: 500 # maximum length of samples
|
109 |
+
batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
|
110 |
+
iter: 20 # update the discriminator every this iterations of generator update
|
111 |
+
thresh: 5 # gradient norm above which the gradient is scaled
|
112 |
+
scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
|
113 |
+
sig: 1.5 # sigma for differentiable duration modeling
|
Data/OOD_texts.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0989ef6a9873b711befefcbe60660ced7a65532359277f766f4db504c558a72
|
3 |
+
size 31758898
|
Data/train_list.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Data/val_list.txt
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LJ022-0023.wav|ðɪ ˌoʊvɚwˈɛlmɪŋ mədʒˈɔːɹᵻɾi ʌv pˈiːpəl ɪn ðɪs kˈʌntɹi nˈoʊ hˌaʊ tə sˈɪft ðə wˈiːt fɹʌmðə tʃˈæf ɪn wʌt ðeɪ hˈɪɹ ænd wʌt ðeɪ ɹˈiːd .|0
|
2 |
+
LJ043-0030.wav|ɪf sˈʌmbɑːdi dˈɪd ðˈæt tə mˌiː , ɐ lˈaʊsi tɹˈɪk lˈaɪk ðˈæt , tə tˈeɪk maɪ wˈaɪf ɐwˈeɪ , ænd ˈɔːl ðə fˈɜːnɪtʃɚ , aɪ wʊd biː mˈæd æz hˈɛl , tˈuː .|0
|
3 |
+
LJ005-0201.wav|ˌæzˌɪz ʃˈoʊn baɪ ðə ɹᵻpˈoːɹt ʌvðə kəmˈɪʃənɚz tʊ ɪŋkwˈaɪɚɹ ˌɪntʊ ðə stˈeɪt ʌvðə mjuːnˈɪsɪpəl kˌɔːɹpɚɹˈeɪʃənz ɪn ˈeɪtiːn θˈɜːɾi fˈaɪv .|0
|
4 |
+
LJ001-0110.wav|ˈiːvən ðə kˈæslɑːn tˈaɪp wɛn ɛnlˈɑːɹdʒd ʃˈoʊz ɡɹˈeɪt ʃˈɔːɹtkʌmɪŋz ɪn ðɪs ɹᵻspˈɛkt :|0
|
5 |
+
LJ003-0345.wav|ˈɔːl ðə kəmˈɪɾi kʊd dˈuː ɪn ðɪs ɹᵻspˈɛkt wʌz tə θɹˈoʊ ðə ɹᵻspˌɑːnsəbˈɪlɪɾi ˌɔn ˈʌðɚz .|0
|
6 |
+
LJ007-0154.wav|ðiːz pˈʌndʒənt ænd wˈɛl ɡɹˈaʊndᵻd stɹˈɪktʃɚz ɐplˈaɪd wɪð stˈɪl ɡɹˈeɪɾɚ fˈoːɹs tə ðɪ ʌŋkənvˈɪktᵻd pɹˈɪzənɚ , ðə mˈæn hˌuː kˈeɪm tə ðə pɹˈɪzən ˈɪnəsənt , ænd stˈɪl ʌŋkəntˈæmᵻnˌeɪɾᵻd ,|0
|
7 |
+
LJ018-0098.wav|ænd ɹˈɛkəɡnˌaɪzd æz wˈʌn ʌvðə fɹˈiːkwɛntɚz ʌvðə bˈoʊɡəs lˈɔː stˈeɪʃənɚz . hɪz ɚɹˈɛst lˈɛd tə ðæt ʌv ˈʌðɚz .|0
|
8 |
+
LJ047-0044.wav|ˈɑːswəld wʌz , haʊˈɛvɚ , wˈɪlɪŋ tə dɪskˈʌs hɪz kˈɑːntækts wɪð sˈoʊviət ɐθˈɔːɹɪɾiz . hiː dᵻnˈaɪd hˌævɪŋ ˌɛni ɪnvˈɑːlvmənt wɪð sˈoʊviət ɪntˈɛlɪdʒəns ˈeɪdʒənsiz|0
|
9 |
+
LJ031-0038.wav|ðə fˈɜːst fɪzˈɪʃən tə sˈiː ðə pɹˈɛzɪdənt æt pˈɑːɹklənd hˈɑːspɪɾəl wʌz dˈɑːktɚ . tʃˈɑːɹlz dʒˈeɪ . kˈæɹɪkˌoʊ , ɐ ɹˈɛzᵻdənt ɪn dʒˈɛnɚɹəl sˈɜːdʒɚɹi .|0
|
10 |
+
LJ048-0194.wav|dˈʊɹɹɪŋ ðə mˈɔːɹnɪŋ ʌv noʊvˈɛmbɚ twˈɛnti tˈuː pɹˈaɪɚ tə ðə mˈoʊɾɚkˌeɪd .|0
|
11 |
+
LJ049-0026.wav|ˌɔn əkˈeɪʒən ðə sˈiːkɹᵻt sˈɜːvɪs hɐzbɪn pɚmˈɪɾᵻd tə hæv ɐn ˈeɪdʒənt ɹˈaɪdɪŋ ɪnðə pˈæsɪndʒɚ kəmpˈɑːɹtmənt wɪððə pɹˈɛzɪdənt .|0
|
12 |
+
LJ004-0152.wav|ɔːlðˈoʊ æt mˈɪstɚ . bˈʌkstənz vˈɪzɪt ɐ nˈuː dʒˈeɪl wʌz ɪn pɹˈɑːsɛs ʌv ɪɹˈɛkʃən , ðə fˈɜːst stˈɛp təwˈɔːɹdz ɹᵻfˈɔːɹm sˈɪns hˈaʊɚdz vˌɪzɪtˈeɪʃən ɪn sˈɛvəntˌiːn sˈɛvənti fˈoːɹ .|0
|
13 |
+
LJ008-0278.wav|ɔːɹ ðˈɛɹz mˌaɪt biː wˈʌn ʌv mˈɛni , ænd ɪt mˌaɪt biː kənsˈɪdɚd nˈɛsᵻsɚɹi tə dˈɑːlɚ mˌeɪk ɐn ɛɡzˈæmpəl.dˈɑːlɚ|0
|
14 |
+
LJ043-0002.wav|ðə wˈɔːɹəŋ kəmˈɪʃən ɹᵻpˈoːɹt . baɪ ðə pɹˈɛzɪdənts kəmˈɪʃən ɔnðɪ ɐsˌæsᵻnˈeɪʃən ʌv pɹˈɛzɪdənt kˈɛnədi . tʃˈæptɚ sˈɛvən . lˈiː hˈɑːɹvi ˈɑːswəld :|0
|
15 |
+
LJ009-0114.wav|mˈɪstɚ . wˈeɪkfiːld wˈaɪndz ˈʌp hɪz ɡɹˈæfɪk bˌʌt sˈʌmwʌt sɛnsˈeɪʃənəl ɐkˈaʊnt baɪ dᵻskɹˈaɪbɪŋ ɐnˈʌðɚ ɹᵻlˈɪdʒəs sˈɜːvɪs , wˌɪtʃ mˈeɪ ɐpɹˈoʊpɹɪˌeɪtli biː ɪnsˈɜːɾᵻd hˈɪɹ .|0
|
16 |
+
LJ028-0506.wav|ɐ mˈɑːdɚn ˈɑːɹɾɪst wʊdhɐv dˈɪfɪkˌʌlti ɪn dˌuːɪŋ sˈʌtʃ ˈækjʊɹət wˈɜːk .|0
|
17 |
+
LJ050-0168.wav|wɪððə pɚtˈɪkjʊlɚ pˈɜːpəsᵻz ʌvðɪ ˈeɪdʒənsi ɪnvˈɑːlvd . ðə kəmˈɪʃən ɹˈɛkəɡnˌaɪzᵻz ðæt ðɪs ɪz ɐ kˌɑːntɹəvˈɜːʃəl ˈɛɹiə|0
|
18 |
+
LJ039-0223.wav|ˈɑːswəldz mɚɹˈiːn tɹˈeɪnɪŋ ɪn mˈɑːɹksmənʃˌɪp , hɪz ˈʌðɚ ɹˈaɪfəl ɛkspˈiəɹɪəns ænd hɪz ɪstˈæblɪʃt fəmˌɪliˈæɹɪɾi wɪð ðɪs pɚtˈɪkjʊlɚ wˈɛpən|0
|
19 |
+
LJ029-0032.wav|ɐkˈoːɹdɪŋ tʊ oʊdˈɑːnəl , kwˈoʊt , wiː hæd ɐ mˈoʊɾɚkˌeɪd wɛɹˈɛvɚ kplˈʌsplʌs wˌɪtʃ hɐdbɪn bˌɪn hˈeɪstili sˈʌmənd fɚðə ðə pˈɜːpəs wiː wˈɛnt , ˈɛnd kwˈoʊt .|0
|
20 |
+
LJ031-0070.wav|dˈɑːktɚ . klˈɑːɹk , hˌuː mˈoʊst klˈoʊsli əbzˈɜːvd ðə hˈɛd wˈuːnd ,|0
|
21 |
+
LJ034-0198.wav|jˈuːɪnz , hˌuː wʌz ɔnðə saʊθwˈɛst kˈɔːɹnɚɹ ʌv ˈɛlm ænd hjˈuːstən stɹˈiːts tˈɛstᵻfˌaɪd ðæt hiː kʊd nˌɑːt dᵻskɹˈaɪb ðə mˈæn hiː sˈɔː ɪnðə wˈɪndoʊ .|0
|
22 |
+
LJ026-0068.wav|ˈɛnɚdʒi ˈɛntɚz ðə plˈænt , tʊ ɐ smˈɔːl ɛkstˈɛnt ,|0
|
23 |
+
LJ039-0075.wav|wˈʌns juː nˈoʊ ðæt juː mˈʌst pˌʊt ðə kɹˈɔshɛɹz ɔnðə tˈɑːɹɡɪt ænd ðæt ɪz ˈɔːl ðæt ɪz nˈɛsᵻsɚɹi .|0
|
24 |
+
LJ004-0096.wav|ðə fˈeɪɾəl kˈɑːnsɪkwənsᵻz wˈɛɹɑːf mˌaɪt biː pɹɪvˈɛntᵻd ɪf ðə dʒˈʌstɪsᵻz ʌvðə pˈiːs wɜː djˈuːli ˈɔːθɚɹˌaɪzd|0
|
25 |
+
LJ005-0014.wav|spˈiːkɪŋ ˌɔn ɐ dᵻbˈeɪt ˌɔn pɹˈɪzən mˈæɾɚz , hiː dᵻklˈɛɹd ðˈæt|0
|
26 |
+
LJ012-0161.wav|hiː wʌz ɹᵻpˈoːɹɾᵻd tə hæv fˈɔːlən ɐwˈeɪ tʊ ɐ ʃˈædoʊ .|0
|
27 |
+
LJ018-0239.wav|hɪz dˌɪsɐpˈɪɹəns ɡˈeɪv kˈʌlɚ ænd sˈʌbstəns tʊ ˈiːvəl ɹᵻpˈoːɹts ɔːlɹˌɛdi ɪn sˌɜːkjʊlˈeɪʃən ðætðə wɪl ænd kənvˈeɪəns əbˌʌv ɹᵻfˈɜːd tuː|0
|
28 |
+
LJ019-0257.wav|hˈɪɹ ðə tɹˈɛd wˈiːl wʌz ɪn jˈuːs , ðɛɹ sˈɛljʊlɚ kɹˈæŋks , ɔːɹ hˈɑːɹd lˈeɪbɚ məʃˈiːnz .|0
|
29 |
+
LJ028-0008.wav|juː tˈæp dʒˈɛntli wɪð jʊɹ hˈiːl əpˌɑːn ðə ʃˈoʊldɚɹ ʌvðə dɹˈoʊmdɚɹi tʊ ˈɜːdʒ hɜːɹ ˈɔn .|0
|
30 |
+
LJ024-0083.wav|ðɪs plˈæn ʌv mˈaɪn ɪz nˈoʊ ɐtˈæk ɔnðə kˈoːɹt ;|0
|
31 |
+
LJ042-0129.wav|nˈoʊ nˈaɪt klˈʌbz ɔːɹ bˈoʊlɪŋ ˈælɪz , nˈoʊ plˈeɪsᵻz ʌv ɹˌɛkɹiːˈeɪʃən ɛksˈɛpt ðə tɹˈeɪd jˈuːniən dˈænsᵻz . aɪ hæv hæd ɪnˈʌf .|0
|
32 |
+
LJ036-0103.wav|ðə pəlˈiːs ˈæskt hˌɪm wˈɛðɚ hiː kʊd pˈɪk ˈaʊt hɪz pˈæsɪndʒɚ fɹʌmðə lˈaɪnʌp .|0
|
33 |
+
LJ046-0058.wav|dˈʊɹɹɪŋ hɪz pɹˈɛzɪdənsi , fɹˈæŋklɪn dˈiː . ɹˈoʊzəvˌɛlt mˌeɪd ˈɔːlmoʊst fˈoːɹ hˈʌndɹɪd dʒˈɜːniz ænd tɹˈævəld mˈoːɹ ðɐn θɹˈiː hˈʌndɹɪd fˈɪfti θˈaʊzənd mˈaɪlz .|0
|
34 |
+
LJ014-0076.wav|hiː wʌz sˈiːn ˈæftɚwɚdz smˈoʊkɪŋ ænd tˈɔːkɪŋ wɪð hɪz hˈoʊsts ɪn ðɛɹ bˈæk pˈɑːɹlɚ , ænd nˈɛvɚ sˈiːn ɐɡˈɛn ɐlˈaɪv .|0
|
35 |
+
LJ002-0043.wav|lˈɔŋ nˈæɹoʊ ɹˈuːmz wˈʌn θˈɜːɾi sˈɪks fˈiːt , sˈɪks twˈɛnti θɹˈiː fˈiːt , ænd ðɪ ˈeɪtθ ˈeɪtiːn ,|0
|
36 |
+
LJ009-0076.wav|wiː kˈʌm tə ðə sˈɜːmən .|0
|
37 |
+
LJ017-0131.wav|ˈiːvən wɛn ðə hˈaɪ ʃˈɛɹɪf hæd tˈoʊld hˌɪm ðɛɹwˌʌz nˈoʊ pˌɑːsəbˈɪlɪɾi əvɚ ɹᵻpɹˈiːv , ænd wɪðˌɪn ɐ fjˈuː ˈaʊɚz ʌv ˌɛksɪkjˈuːʃən .|0
|
38 |
+
LJ046-0184.wav|bˌʌt ðɛɹ ɪz ɐ sˈɪstəm fɚðɪ ɪmˈiːdɪət nˌoʊɾɪfɪkˈeɪʃən ʌvðə sˈiːkɹᵻt sˈɜːvɪs baɪ ðə kənfˈaɪnɪŋ ˌɪnstɪtˈuːʃən wɛn ɐ sˈʌbdʒɛkt ɪz ɹᵻlˈiːst ɔːɹ ɛskˈeɪps .|0
|
39 |
+
LJ014-0263.wav|wˌɛn ˈʌðɚ plˈɛʒɚz pˈɔːld hiː tˈʊk ɐ θˈiəɾɚ , ænd pˈoʊzd æz ɐ mjuːnˈɪfɪsənt pˈeɪtɹən ʌvðə dɹəmˈæɾɪk ˈɑːɹt .|0
|
40 |
+
LJ042-0096.wav|ˈoʊld ɛkstʃˈeɪndʒ ɹˈeɪt ɪn ɐdˈɪʃən tə hɪz fˈæktɚɹi sˈælɚɹi ʌv ɐpɹˈɑːksɪmətli ˈiːkwəl ɐmˈaʊnt|0
|
41 |
+
LJ049-0050.wav|hˈɪl hæd bˈoʊθ fˈiːt ɔnðə kˈɑːɹ ænd wʌz klˈaɪmɪŋ ɐbˈoːɹd tʊ ɐsˈɪst pɹˈɛzɪdənt ænd mˈɪsɪz . kˈɛnədi .|0
|
42 |
+
LJ019-0186.wav|sˈiːɪŋ ðæt sˈɪns ðɪ ɪstˈæblɪʃmənt ʌvðə sˈɛntɹəl kɹˈɪmɪnəl kˈoːɹt , nˈuːɡeɪt ɹᵻsˈiːvd pɹˈɪzənɚz fɔːɹ tɹˈaɪəl fɹʌm sˈɛvɹəl kˈaʊntiz ,|0
|
43 |
+
LJ028-0307.wav|ðˈɛn lˈɛt twˈɛnti dˈeɪz pˈæs , ænd æt ðɪ ˈɛnd ʌv ðæt tˈaɪm stˈeɪʃən nˌɪɹ ðə tʃˈældæsəŋ ɡˈeɪts ɐ bˈɑːdi ʌv fˈoːɹ θˈaʊzənd .|0
|
44 |
+
LJ012-0235.wav|wˌaɪl ðeɪ wɜːɹ ɪn ɐ stˈeɪt ʌv ɪnsˌɛnsəbˈɪlɪɾi ðə mˈɜːdɚ wʌz kəmˈɪɾᵻd .|0
|
45 |
+
LJ034-0053.wav|ɹˈiːtʃt ðə sˈeɪm kəŋklˈuːʒən æz lætˈoʊnə ðætðə pɹˈɪnts fˈaʊnd ɔnðə kˈɑːɹtənz wɜː ðoʊz ʌv lˈiː hˈɑːɹvi ˈɑːswəld .|0
|
46 |
+
LJ014-0030.wav|ðiːz wɜː dˈæmnətˌoːɹi fˈækts wˌɪtʃ wˈɛl səpˈoːɹɾᵻd ðə pɹˌɑːsɪkjˈuːʃən .|0
|
47 |
+
LJ015-0203.wav|bˌʌt wɜː ðə pɹɪkˈɔːʃənz tˈuː mˈɪnɪt , ðə vˈɪdʒɪləns tˈuː klˈoʊs təbi ᵻlˈuːdᵻd ɔːɹ ˌoʊvɚkˈʌm ?|0
|
48 |
+
LJ028-0093.wav|bˌʌt hɪz skɹˈaɪb ɹˈoʊt ɪɾ ɪnðə mˈænɚ kˈʌstəmˌɛɹi fɚðə skɹˈaɪbz ʌv ðoʊz dˈeɪz tə ɹˈaɪt ʌv ðɛɹ ɹˈɔɪəl mˈæstɚz .|0
|
49 |
+
LJ002-0018.wav|ðɪ ɪnˈædɪkwəsi ʌvðə dʒˈeɪl wʌz nˈoʊɾɪst ænd ɹᵻpˈoːɹɾᵻd əpˌɑːn ɐɡˈɛn ænd ɐɡˈɛn baɪ ðə ɡɹˈænd dʒˈʊɹɹiz ʌvðə sˈɪɾi ʌv lˈʌndən ,|0
|
50 |
+
LJ028-0275.wav|æt lˈæst , ɪnðə twˈɛntiəθ mˈʌnθ ,|0
|
51 |
+
LJ012-0042.wav|wˌɪtʃ hiː kˈɛpt kənsˈiːld ɪn ɐ hˈaɪdɪŋ plˈeɪs wɪð ɐ tɹˈæp dˈoːɹ dʒˈʌst ˌʌndɚ hɪz bˈɛd .|0
|
52 |
+
LJ011-0096.wav|hiː mˈæɹid ɐ lˈeɪdi ˈɔːlsoʊ bᵻlˈɔŋɪŋ tə ðə səsˈaɪəɾi ʌv fɹˈɛndz , hˌuː bɹˈɔːt hˌɪm ɐ lˈɑːɹdʒ fˈɔːɹtʃʊn , wˈɪtʃ , ænd hɪz ˈoʊn mˈʌni , hiː pˌʊt ˌɪntʊ ɐ sˈɪɾi fˈɜːm ,|0
|
53 |
+
LJ036-0077.wav|ɹˈɑːdʒɚ dˈiː . kɹˈeɪɡ , ɐ dˈɛpjuːɾi ʃˈɛɹɪf ʌv dˈæləs kˈaʊnti ,|0
|
54 |
+
LJ016-0318.wav|ˈʌðɚɹ əfˈɪʃəlz , ɡɹˈeɪt lˈɔɪɚz , ɡˈʌvɚnɚz ʌv pɹˈɪzənz , ænd tʃˈæplɪnz səpˈoːɹɾᵻd ðɪs vjˈuː .|0
|
55 |
+
LJ013-0164.wav|hˌuː kˈeɪm fɹʌm hɪz ɹˈuːm ɹˈɛdi dɹˈɛst , ɐ səspˈɪʃəs sˈɜːkəmstˌæns , æz hiː wʌz ˈɔːlweɪz lˈeɪt ɪnðə mˈɔːɹnɪŋ .|0
|
56 |
+
LJ027-0141.wav|ɪz klˈoʊsli ɹᵻpɹədˈuːst ɪnðə lˈaɪf hˈɪstɚɹi ʌv ɛɡzˈɪstɪŋ dˈɪɹ . ɔːɹ , ɪn ˈʌðɚ wˈɜːdz ,|0
|
57 |
+
LJ028-0335.wav|ɐkˈoːɹdɪŋli ðeɪ kəmˈɪɾᵻd tə hˌɪm ðə kəmˈænd ʌv ðɛɹ hˈoʊl ˈɑːɹmi , ænd pˌʊt ðə kˈiːz ʌv ðɛɹ sˈɪɾi ˌɪntʊ hɪz hˈændz .|0
|
58 |
+
LJ031-0202.wav|mˈɪsɪz . kˈɛnədi tʃˈoʊz ðə hˈɑːspɪɾəl ɪn bəθˈɛzdə fɚðɪ ˈɔːtɑːpsi bɪkˈʌz ðə pɹˈɛzɪdənt hæd sˈɜːvd ɪnðə nˈeɪvi .|0
|
59 |
+
LJ021-0145.wav|fɹʌm ðoʊz wˈɪlɪŋ tə dʒˈɔɪn ɪn ɪstˈæblɪʃɪŋ ðɪs hˈo��pt fɔːɹ pˈiəɹɪəd ʌv pˈiːs ,|0
|
60 |
+
LJ016-0288.wav|dˈɑːlɚ mˈuːlɚ , mˈuːlɚ , hiːz ðə mˈæn , dˈɑːlɚ tˈɪl ɐ daɪvˈɜːʒən wʌz kɹiːˈeɪɾᵻd baɪ ðɪ ɐpˈɪɹəns ʌvðə ɡˈæloʊz , wˌɪtʃ wʌz ɹᵻsˈiːvd wɪð kəntˈɪnjuːəs jˈɛlz .|0
|
61 |
+
LJ028-0081.wav|jˈɪɹz lˈeɪɾɚ , wˌɛn ðɪ ˌɑːɹkiːˈɑːlədʒˌɪsts kʊd ɹˈɛdili dɪstˈɪŋɡwɪʃ ðə fˈɔls fɹʌmðə tɹˈuː ,|0
|
62 |
+
LJ018-0081.wav|hɪz dᵻfˈɛns bˌiːɪŋ ðæt hiː hæd ɪntˈɛndᵻd tə kəmˈɪt sˈuːɪsˌaɪd , bˌʌt ðˈæt , ɔnðɪ ɐpˈɪɹəns ʌv ðɪs ˈɑːfɪsɚ hˌuː hæd ɹˈɔŋd hˌɪm ,|0
|
63 |
+
LJ021-0066.wav|təɡˌɛðɚ wɪð ɐ ɡɹˈeɪt ˈɪŋkɹiːs ɪnðə pˈeɪɹoʊlz , ðɛɹ hɐz kˈʌm ɐ səbstˈænʃəl ɹˈaɪz ɪnðə tˈoʊɾəl ʌv ɪndˈʌstɹɪəl pɹˈɑːfɪts|0
|
64 |
+
LJ009-0238.wav|ˈæftɚ ðɪs ðə ʃˈɛɹɪfs sˈɛnt fɔːɹ ɐnˈʌðɚ ɹˈoʊp , bˌʌt ðə spɛktˈeɪɾɚz ˌɪntəfˈɪɹd , ænd ðə mˈæn wʌz kˈæɹid bˈæk tə dʒˈeɪl .|0
|
65 |
+
LJ005-0079.wav|ænd ɪmpɹˈuːv ðə mˈɔːɹəlz ʌvðə pɹˈɪzənɚz , ænd ʃˌæl ɪnʃˈʊɹ ðə pɹˈɑːpɚ mˈɛʒɚɹ ʌv pˈʌnɪʃmənt tə kənvˈɪktᵻd əfˈɛndɚz .|0
|
66 |
+
LJ035-0019.wav|dɹˈoʊv tə ðə nɔːɹθwˈɛst kˈɔːɹnɚɹ ʌv ˈɛlm ænd hjˈuːstən , ænd pˈɑːɹkt ɐpɹˈɑːksɪmətli tˈɛn fˈiːt fɹʌmðə tɹˈæfɪk sˈɪɡnəl .|0
|
67 |
+
LJ036-0174.wav|ðɪs ɪz ðɪ ɐpɹˈɑːksɪmət tˈaɪm hiː ˈɛntɚd ðə ɹˈuːmɪŋhˌaʊs , ɐkˈoːɹdɪŋ tʊ ˈɜːliːn ɹˈɑːbɚts , ðə hˈaʊskiːpɚ ðˈɛɹ .|0
|
68 |
+
LJ046-0146.wav|ðə kɹaɪtˈiəɹɪə ɪn ɪfˈɛkt pɹˈaɪɚ tə noʊvˈɛmbɚ twˈɛnti tˈuː , nˈaɪntiːn sˈɪksti θɹˈiː , fɔːɹ dɪtˈɜːmɪnɪŋ wˈɛðɚ tʊ ɐksˈɛpt mətˈɪɹiəl fɚðə pˌiːˌɑːɹɹˈɛs dʒˈɛnɚɹəl fˈaɪlz|0
|
69 |
+
LJ017-0044.wav|ænd ðə dˈiːpɪst æŋzˈaɪəɾi wʌz fˈɛlt ðætðə kɹˈaɪm , ɪf kɹˈaɪm ðˈɛɹ hɐdbɪn , ʃˌʊd biː bɹˈɔːt hˈoʊm tʊ ɪts pˈɜːpɪtɹˌeɪɾɚ .|0
|
70 |
+
LJ017-0070.wav|bˌʌt hɪz spˈoːɹɾɪŋ ˌɑːpɚɹˈeɪʃənz dɪdnˌɑːt pɹˈɑːspɚ , ænd hiː bɪkˌeɪm ɐ nˈiːdi mˈæn , ˈɔːlweɪz dɹˈɪvən tə dˈɛspɚɹət stɹˈeɪts fɔːɹ kˈæʃ .|0
|
71 |
+
LJ014-0020.wav|hiː wʌz sˈuːn ˈæftɚwɚdz ɚɹˈɛstᵻd ˌɔn səspˈɪʃən , ænd ɐ sˈɜːtʃ ʌv hɪz lˈɑːdʒɪŋz bɹˈɔːt tə lˈaɪt sˈɛvɹəl ɡˈɑːɹmənts sˈætʃɚɹˌeɪɾᵻd wɪð blˈʌd ;|0
|
72 |
+
LJ016-0020.wav|hiː nˈɛvɚ ɹˈiːtʃt ðə sˈɪstɚn , bˌʌt fˈɛl bˈæk ˌɪntʊ ðə jˈɑːɹd , ˈɪndʒɚɹɪŋ hɪz lˈɛɡz sᵻvˈɪɹli .|0
|
73 |
+
LJ045-0230.wav|wˌɛn hiː wʌz fˈaɪnəli ˌæpɹihˈɛndᵻd ɪnðə tˈɛksəs θˈiəɾɚ . ɔːlðˈoʊ ɪɾ ɪz nˌɑːt fˈʊli kɚɹˈɑːbɚɹˌeɪɾᵻd baɪ ˈʌðɚz hˌuː wɜː pɹˈɛzənt ,|0
|
74 |
+
LJ035-0129.wav|ænd ʃiː mˈʌstɐv ɹˈʌn dˌaʊn ðə stˈɛɹz ɐhˈɛd ʌv ˈɑːswəld ænd wʊd pɹˈɑːbəbli hæv sˈiːn ɔːɹ hˈɜːd hˌɪm .|0
|
75 |
+
LJ008-0307.wav|ˈæftɚwɚdz ɛkspɹˈɛs ɐ wˈɪʃ tə mˈɜːdɚ ðə ɹᵻkˈoːɹdɚ fɔːɹ hˌævɪŋ kˈɛpt ðˌɛm sˌoʊ lˈɔŋ ɪn səspˈɛns .|0
|
76 |
+
LJ008-0294.wav|nˌɪɹli ɪndˈɛfɪnətli dᵻfˈɜːd .|0
|
77 |
+
LJ047-0148.wav|ˌɔn ɑːktˈoʊbɚ twˈɛnti fˈaɪv ,|0
|
78 |
+
LJ008-0111.wav|ðeɪ ˈɛntɚd ɐ dˈɑːlɚ stˈoʊŋ kˈoʊld ɹˈuːm , dˈɑːlɚɹ ænd wɜː pɹˈɛzəntli dʒˈɔɪnd baɪ ðə pɹˈɪzənɚ .|0
|
79 |
+
LJ034-0042.wav|ðæt hiː kʊd ˈoʊnli tˈɛstᵻfˌaɪ wɪð sˈɜːtənti ðætðə pɹˈɪnt wʌz lˈɛs ðɐn θɹˈiː dˈeɪz ˈoʊld .|0
|
80 |
+
LJ037-0234.wav|mˈɪsɪz . mˈɛɹi bɹˈɑːk , ðə wˈaɪf əvə mɪkˈænɪk hˌuː wˈɜːkt æt ðə stˈeɪʃən , wʌz ðɛɹ æt ðə tˈaɪm ænd ʃiː sˈɔː ɐ wˈaɪt mˈeɪl ,|0
|
81 |
+
LJ040-0002.wav|tʃˈæptɚ sˈɛvən . lˈiː hˈɑːɹvi ˈɑːswəld : bˈækɡɹaʊnd ænd pˈɑːsᵻbəl mˈoʊɾɪvz , pˈɑːɹt wˌʌn .|0
|
82 |
+
LJ045-0140.wav|ðɪ ˈɑːɹɡjuːmənts hiː jˈuːzd tə dʒˈʌstᵻfˌaɪ hɪz jˈuːs ʌvðɪ ˈeɪliəs sədʒˈɛst ðæt ˈɑːswəld mˌeɪhɐv kˈʌm tə θˈɪŋk ðætðə hˈoʊl wˈɜːld wʌz bᵻkˈʌmɪŋ ɪnvˈɑːlvd|0
|
83 |
+
LJ012-0035.wav|ðə nˈʌmbɚ ænd nˈeɪmz ˌɔn wˈɑːtʃᵻz , wɜː kˈɛɹfəli ɹᵻmˈuːvd ɔːɹ əblˈɪɾɚɹˌeɪɾᵻd ˈæftɚ ðə ɡˈʊdz pˈæst ˌaʊɾəv hɪz hˈændz .|0
|
84 |
+
LJ012-0250.wav|ɔnðə sˈɛvənθ dʒuːlˈaɪ , ˈeɪtiːn θˈɜːɾi sˈɛvən ,|0
|
85 |
+
LJ016-0179.wav|kəntɹˈæktᵻd wɪð ʃˈɛɹɪfs ænd kənvˈiːnɚz tə wˈɜːk baɪ ðə dʒˈɑːb .|0
|
86 |
+
LJ016-0138.wav|æɾə dˈɪstəns fɹʌmðə pɹˈɪzən .|0
|
87 |
+
LJ027-0052.wav|ðiːz pɹˈɪnsɪpəlz ʌv həmˈɑːlədʒi ɑːɹ ᵻsˈɛnʃəl tʊ ɐ kɚɹˈɛkt ɪntˌɜːpɹɪtˈeɪʃən ʌvðə fˈækts ʌv mɔːɹfˈɑːlədʒi .|0
|
88 |
+
LJ031-0134.wav|ˌɔn wˈʌn əkˈeɪʒən mˈɪsɪz . dʒˈɑːnsən , ɐkˈʌmpənid baɪ tˈuː sˈiːkɹᵻt sˈɜːvɪs ˈeɪdʒənts , lˈɛft ðə ɹˈuːm tə sˈiː mˈɪsɪz . kˈɛnədi ænd mˈɪsɪz . kˈɑːnæli .|0
|
89 |
+
LJ019-0273.wav|wˌɪtʃ sˌɜː dʒˈɑːʃjuːə dʒˈɛb tˈoʊld ðə kəmˈɪɾi hiː kənsˈɪdɚd ðə pɹˈɑːpɚɹ ˈɛlɪmənts ʌv pˈiːnəl dˈɪsɪplˌɪn .|0
|
90 |
+
LJ014-0110.wav|æt ðə fˈɜːst ðə bˈɑːksᵻz wɜːɹ ɪmpˈaʊndᵻd , ˈoʊpənd , ænd fˈaʊnd tə kəntˈeɪn mˈɛnɪəv oʊkˈɑːnɚz ɪfˈɛkts .|0
|
91 |
+
LJ034-0160.wav|ˌɔn bɹˈɛnənz sˈʌbsᵻkwənt sˈɜːʔn̩ aɪdˈɛntɪfɪkˈeɪʃən ʌv lˈiː hˈɑːɹvi ˈɑːswəld æz ðə mˈæn hiː sˈɔː fˈaɪɚ ðə ɹˈaɪfəl .|0
|
92 |
+
LJ038-0199.wav|ᵻlˈɛvən . ɪf aɪɐm ɐlˈaɪv ænd tˈeɪkən pɹˈɪzənɚ ,|0
|
93 |
+
LJ014-0010.wav|jˈɛt hiː kʊd nˌɑːt ˌoʊvɚkˈʌm ðə stɹˈeɪndʒ fˌæsᵻnˈeɪʃən ɪt hˈæd fɔːɹ hˌɪm , ænd ɹᵻmˈeɪnd baɪ ðə sˈaɪd ʌvðə kˈɔːɹps tˈɪl ðə stɹˈɛtʃɚ kˈeɪm .|0
|
94 |
+
LJ033-0047.wav|aɪ nˈoʊɾɪst wɛn aɪ wɛnt ˈaʊt ðætðə lˈaɪt wʌz ˈɔn , ˈɛnd kwˈoʊt ,|0
|
95 |
+
LJ040-0027.wav|hiː wʌz nˈɛvɚ sˈæɾɪsfˌaɪd wɪð ˈɛnɪθˌɪŋ .|0
|
96 |
+
LJ048-0228.wav|ænd ˈʌðɚz hˌuː wɜː pɹˈɛzənt sˈeɪ ðæt nˈoʊ ˈeɪdʒənt wʌz ɪnˈiːbɹɪˌeɪɾᵻd ɔːɹ ˈæktᵻd ɪmpɹˈɑːpɚli .|0
|
97 |
+
LJ003-0111.wav|hiː wʌz ɪŋ kˈɑːnsɪkwəns pˌʊt ˌaʊɾəv ðə pɹətˈɛkʃən ʌv ðɛɹ ɪntˈɜːnəl lˈɔː , ˈɛnd kwˈoʊt . ðɛɹ kˈoʊd wʌzɐ sˈʌbdʒɛkt ʌv sˌʌm kjˌʊɹɹɪˈɔsɪɾi .|0
|
98 |
+
LJ008-0258.wav|lˈɛt mˌiː ɹᵻtɹˈeɪs maɪ stˈɛps , ænd spˈiːk mˈoːɹ ɪn diːtˈeɪl ʌvðə tɹˈiːtmənt ʌvðə kəndˈɛmd ɪn ðoʊz blˈʌdθɜːsti ænd bɹˈuːɾəli ɪndˈɪfɹənt dˈeɪz ,|0
|
99 |
+
LJ029-0022.wav|ðɪ ɚɹˈɪdʒɪnəl plˈæŋ kˈɔːld fɚðə pɹˈɛzɪdənt tə spˈɛnd ˈoʊnli wˈʌn dˈeɪ ɪnðə stˈeɪt , mˌeɪkɪŋ wˈɜːlwɪnd vˈɪzɪts tə dˈæləs , fˈɔːɹt wˈɜːθ , sˌæn æntˈoʊnɪˌoʊ , ænd hjˈuːstən .|0
|
100 |
+
LJ004-0045.wav|mˈɪstɚ . stˈɜːdʒᵻz bˈoːɹn , sˌɜː dʒˈeɪmz mˈækɪntˌɑːʃ , sˌɜː dʒˈeɪmz skˈɑːɹlɪt , ænd wˈɪljəm wˈɪlbɚfˌoːɹs .|0
|
Models/LibriTTS/config.yml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{ASR_config: Utils/ASR/config.yml, ASR_path: Utils/ASR/epoch_00080.pth, F0_path: Utils/JDC/bst.t7,
|
2 |
+
PLBERT_dir: Utils/PLBERT/, batch_size: 8, data_params: {OOD_data: Data/OOD_texts.txt,
|
3 |
+
min_length: 50, root_path: '', train_data: Data/train_list.txt, val_data: Data/val_list.txt},
|
4 |
+
device: cuda, epochs_1st: 40, epochs_2nd: 25, first_stage_path: first_stage.pth,
|
5 |
+
load_only_params: false, log_dir: Models/LibriTTS, log_interval: 10, loss_params: {
|
6 |
+
TMA_epoch: 4, diff_epoch: 0, joint_epoch: 0, lambda_F0: 1.0, lambda_ce: 20.0,
|
7 |
+
lambda_diff: 1.0, lambda_dur: 1.0, lambda_gen: 1.0, lambda_mel: 5.0, lambda_mono: 1.0,
|
8 |
+
lambda_norm: 1.0, lambda_s2s: 1.0, lambda_slm: 1.0, lambda_sty: 1.0}, max_len: 300,
|
9 |
+
model_params: {decoder: {resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3,
|
10 |
+
5]], resblock_kernel_sizes: [3, 7, 11], type: hifigan, upsample_initial_channel: 512,
|
11 |
+
upsample_kernel_sizes: [20, 10, 6, 4], upsample_rates: [10, 5, 3, 2]}, diffusion: {
|
12 |
+
dist: {estimate_sigma_data: true, mean: -3.0, sigma_data: 0.19926648961191362,
|
13 |
+
std: 1.0}, embedding_mask_proba: 0.1, transformer: {head_features: 64, multiplier: 2,
|
14 |
+
num_heads: 8, num_layers: 3}}, dim_in: 64, dropout: 0.2, hidden_dim: 512,
|
15 |
+
max_conv_dim: 512, max_dur: 50, multispeaker: true, n_layer: 3, n_mels: 80, n_token: 178,
|
16 |
+
slm: {hidden: 768, initial_channel: 64, model: microsoft/wavlm-base-plus, nlayers: 13,
|
17 |
+
sr: 16000}, style_dim: 128}, optimizer_params: {bert_lr: 1.0e-05, ft_lr: 1.0e-05,
|
18 |
+
lr: 0.0001}, preprocess_params: {spect_params: {hop_length: 300, n_fft: 2048,
|
19 |
+
win_length: 1200}, sr: 24000}, pretrained_model: Models/LibriTTS/epoch_2nd_00002.pth,
|
20 |
+
save_freq: 1, second_stage_load_pretrained: true, slmadv_params: {batch_percentage: 0.5,
|
21 |
+
iter: 20, max_len: 500, min_len: 400, scale: 0.01, sig: 1.5, thresh: 5}}
|
Models/LibriTTS/epochs_2nd_00020.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1164ffe19a17449d2c722234cecaf2836b35a698fb8ffd42562d2663657dca0a
|
3 |
+
size 771390526
|
Modules/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
Modules/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (162 Bytes). View file
|
|
Modules/__pycache__/discriminators.cpython-311.pyc
ADDED
Binary file (12.2 kB). View file
|
|
Modules/__pycache__/hifigan.cpython-311.pyc
ADDED
Binary file (30 kB). View file
|
|
Modules/__pycache__/istftnet.cpython-311.pyc
ADDED
Binary file (34.4 kB). View file
|
|
Modules/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (1.17 kB). View file
|
|
Modules/diffusion/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
Modules/diffusion/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (172 Bytes). View file
|
|
Modules/diffusion/__pycache__/diffusion.cpython-311.pyc
ADDED
Binary file (5.54 kB). View file
|
|
Modules/diffusion/__pycache__/modules.cpython-311.pyc
ADDED
Binary file (32.8 kB). View file
|
|
Modules/diffusion/__pycache__/sampler.cpython-311.pyc
ADDED
Binary file (37.7 kB). View file
|
|
Modules/diffusion/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (5.85 kB). View file
|
|
Modules/diffusion/diffusion.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import pi
|
2 |
+
from random import randint
|
3 |
+
from typing import Any, Optional, Sequence, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from einops import rearrange
|
7 |
+
from torch import Tensor, nn
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
from .utils import *
|
11 |
+
from .sampler import *
|
12 |
+
|
13 |
+
"""
|
14 |
+
Diffusion Classes (generic for 1d data)
|
15 |
+
"""
|
16 |
+
|
17 |
+
|
18 |
+
class Model1d(nn.Module):
|
19 |
+
def __init__(self, unet_type: str = "base", **kwargs):
|
20 |
+
super().__init__()
|
21 |
+
diffusion_kwargs, kwargs = groupby("diffusion_", kwargs)
|
22 |
+
self.unet = None
|
23 |
+
self.diffusion = None
|
24 |
+
|
25 |
+
def forward(self, x: Tensor, **kwargs) -> Tensor:
|
26 |
+
return self.diffusion(x, **kwargs)
|
27 |
+
|
28 |
+
def sample(self, *args, **kwargs) -> Tensor:
|
29 |
+
return self.diffusion.sample(*args, **kwargs)
|
30 |
+
|
31 |
+
|
32 |
+
"""
|
33 |
+
Audio Diffusion Classes (specific for 1d audio data)
|
34 |
+
"""
|
35 |
+
|
36 |
+
|
37 |
+
def get_default_model_kwargs():
|
38 |
+
return dict(
|
39 |
+
channels=128,
|
40 |
+
patch_size=16,
|
41 |
+
multipliers=[1, 2, 4, 4, 4, 4, 4],
|
42 |
+
factors=[4, 4, 4, 2, 2, 2],
|
43 |
+
num_blocks=[2, 2, 2, 2, 2, 2],
|
44 |
+
attentions=[0, 0, 0, 1, 1, 1, 1],
|
45 |
+
attention_heads=8,
|
46 |
+
attention_features=64,
|
47 |
+
attention_multiplier=2,
|
48 |
+
attention_use_rel_pos=False,
|
49 |
+
diffusion_type="v",
|
50 |
+
diffusion_sigma_distribution=UniformDistribution(),
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
def get_default_sampling_kwargs():
|
55 |
+
return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True)
|
56 |
+
|
57 |
+
|
58 |
+
class AudioDiffusionModel(Model1d):
|
59 |
+
def __init__(self, **kwargs):
|
60 |
+
super().__init__(**{**get_default_model_kwargs(), **kwargs})
|
61 |
+
|
62 |
+
def sample(self, *args, **kwargs):
|
63 |
+
return super().sample(*args, **{**get_default_sampling_kwargs(), **kwargs})
|
64 |
+
|
65 |
+
|
66 |
+
class AudioDiffusionConditional(Model1d):
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
embedding_features: int,
|
70 |
+
embedding_max_length: int,
|
71 |
+
embedding_mask_proba: float = 0.1,
|
72 |
+
**kwargs,
|
73 |
+
):
|
74 |
+
self.embedding_mask_proba = embedding_mask_proba
|
75 |
+
default_kwargs = dict(
|
76 |
+
**get_default_model_kwargs(),
|
77 |
+
unet_type="cfg",
|
78 |
+
context_embedding_features=embedding_features,
|
79 |
+
context_embedding_max_length=embedding_max_length,
|
80 |
+
)
|
81 |
+
super().__init__(**{**default_kwargs, **kwargs})
|
82 |
+
|
83 |
+
def forward(self, *args, **kwargs):
|
84 |
+
default_kwargs = dict(embedding_mask_proba=self.embedding_mask_proba)
|
85 |
+
return super().forward(*args, **{**default_kwargs, **kwargs})
|
86 |
+
|
87 |
+
def sample(self, *args, **kwargs):
|
88 |
+
default_kwargs = dict(
|
89 |
+
**get_default_sampling_kwargs(),
|
90 |
+
embedding_scale=5.0,
|
91 |
+
)
|
92 |
+
return super().sample(*args, **{**default_kwargs, **kwargs})
|
93 |
+
|
94 |
+
|
Modules/diffusion/modules.py
ADDED
@@ -0,0 +1,693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import floor, log, pi
|
2 |
+
from typing import Any, List, Optional, Sequence, Tuple, Union
|
3 |
+
|
4 |
+
from .utils import *
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from einops import rearrange, reduce, repeat
|
9 |
+
from einops.layers.torch import Rearrange
|
10 |
+
from einops_exts import rearrange_many
|
11 |
+
from torch import Tensor, einsum
|
12 |
+
|
13 |
+
|
14 |
+
"""
|
15 |
+
Utils
|
16 |
+
"""
|
17 |
+
|
18 |
+
class AdaLayerNorm(nn.Module):
|
19 |
+
def __init__(self, style_dim, channels, eps=1e-5):
|
20 |
+
super().__init__()
|
21 |
+
self.channels = channels
|
22 |
+
self.eps = eps
|
23 |
+
|
24 |
+
self.fc = nn.Linear(style_dim, channels*2)
|
25 |
+
|
26 |
+
def forward(self, x, s):
|
27 |
+
x = x.transpose(-1, -2)
|
28 |
+
x = x.transpose(1, -1)
|
29 |
+
|
30 |
+
h = self.fc(s)
|
31 |
+
h = h.view(h.size(0), h.size(1), 1)
|
32 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
33 |
+
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
34 |
+
|
35 |
+
|
36 |
+
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
37 |
+
x = (1 + gamma) * x + beta
|
38 |
+
return x.transpose(1, -1).transpose(-1, -2)
|
39 |
+
|
40 |
+
class StyleTransformer1d(nn.Module):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
num_layers: int,
|
44 |
+
channels: int,
|
45 |
+
num_heads: int,
|
46 |
+
head_features: int,
|
47 |
+
multiplier: int,
|
48 |
+
use_context_time: bool = True,
|
49 |
+
use_rel_pos: bool = False,
|
50 |
+
context_features_multiplier: int = 1,
|
51 |
+
rel_pos_num_buckets: Optional[int] = None,
|
52 |
+
rel_pos_max_distance: Optional[int] = None,
|
53 |
+
context_features: Optional[int] = None,
|
54 |
+
context_embedding_features: Optional[int] = None,
|
55 |
+
embedding_max_length: int = 512,
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
self.blocks = nn.ModuleList(
|
60 |
+
[
|
61 |
+
StyleTransformerBlock(
|
62 |
+
features=channels + context_embedding_features,
|
63 |
+
head_features=head_features,
|
64 |
+
num_heads=num_heads,
|
65 |
+
multiplier=multiplier,
|
66 |
+
style_dim=context_features,
|
67 |
+
use_rel_pos=use_rel_pos,
|
68 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
69 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
70 |
+
)
|
71 |
+
for i in range(num_layers)
|
72 |
+
]
|
73 |
+
)
|
74 |
+
|
75 |
+
self.to_out = nn.Sequential(
|
76 |
+
Rearrange("b t c -> b c t"),
|
77 |
+
nn.Conv1d(
|
78 |
+
in_channels=channels + context_embedding_features,
|
79 |
+
out_channels=channels,
|
80 |
+
kernel_size=1,
|
81 |
+
),
|
82 |
+
)
|
83 |
+
|
84 |
+
use_context_features = exists(context_features)
|
85 |
+
self.use_context_features = use_context_features
|
86 |
+
self.use_context_time = use_context_time
|
87 |
+
|
88 |
+
if use_context_time or use_context_features:
|
89 |
+
context_mapping_features = channels + context_embedding_features
|
90 |
+
|
91 |
+
self.to_mapping = nn.Sequential(
|
92 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
93 |
+
nn.GELU(),
|
94 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
95 |
+
nn.GELU(),
|
96 |
+
)
|
97 |
+
|
98 |
+
if use_context_time:
|
99 |
+
assert exists(context_mapping_features)
|
100 |
+
self.to_time = nn.Sequential(
|
101 |
+
TimePositionalEmbedding(
|
102 |
+
dim=channels, out_features=context_mapping_features
|
103 |
+
),
|
104 |
+
nn.GELU(),
|
105 |
+
)
|
106 |
+
|
107 |
+
if use_context_features:
|
108 |
+
assert exists(context_features) and exists(context_mapping_features)
|
109 |
+
self.to_features = nn.Sequential(
|
110 |
+
nn.Linear(
|
111 |
+
in_features=context_features, out_features=context_mapping_features
|
112 |
+
),
|
113 |
+
nn.GELU(),
|
114 |
+
)
|
115 |
+
|
116 |
+
self.fixed_embedding = FixedEmbedding(
|
117 |
+
max_length=embedding_max_length, features=context_embedding_features
|
118 |
+
)
|
119 |
+
|
120 |
+
|
121 |
+
def get_mapping(
|
122 |
+
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
123 |
+
) -> Optional[Tensor]:
|
124 |
+
"""Combines context time features and features into mapping"""
|
125 |
+
items, mapping = [], None
|
126 |
+
# Compute time features
|
127 |
+
if self.use_context_time:
|
128 |
+
assert_message = "use_context_time=True but no time features provided"
|
129 |
+
assert exists(time), assert_message
|
130 |
+
items += [self.to_time(time)]
|
131 |
+
# Compute features
|
132 |
+
if self.use_context_features:
|
133 |
+
assert_message = "context_features exists but no features provided"
|
134 |
+
assert exists(features), assert_message
|
135 |
+
items += [self.to_features(features)]
|
136 |
+
|
137 |
+
# Compute joint mapping
|
138 |
+
if self.use_context_time or self.use_context_features:
|
139 |
+
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
140 |
+
mapping = self.to_mapping(mapping)
|
141 |
+
|
142 |
+
return mapping
|
143 |
+
|
144 |
+
def run(self, x, time, embedding, features):
|
145 |
+
|
146 |
+
mapping = self.get_mapping(time, features)
|
147 |
+
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
148 |
+
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
149 |
+
|
150 |
+
for block in self.blocks:
|
151 |
+
x = x + mapping
|
152 |
+
x = block(x, features)
|
153 |
+
|
154 |
+
x = x.mean(axis=1).unsqueeze(1)
|
155 |
+
x = self.to_out(x)
|
156 |
+
x = x.transpose(-1, -2)
|
157 |
+
|
158 |
+
return x
|
159 |
+
|
160 |
+
def forward(self, x: Tensor,
|
161 |
+
time: Tensor,
|
162 |
+
embedding_mask_proba: float = 0.0,
|
163 |
+
embedding: Optional[Tensor] = None,
|
164 |
+
features: Optional[Tensor] = None,
|
165 |
+
embedding_scale: float = 1.0) -> Tensor:
|
166 |
+
|
167 |
+
b, device = embedding.shape[0], embedding.device
|
168 |
+
fixed_embedding = self.fixed_embedding(embedding)
|
169 |
+
if embedding_mask_proba > 0.0:
|
170 |
+
# Randomly mask embedding
|
171 |
+
batch_mask = rand_bool(
|
172 |
+
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
173 |
+
)
|
174 |
+
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
175 |
+
|
176 |
+
if embedding_scale != 1.0:
|
177 |
+
# Compute both normal and fixed embedding outputs
|
178 |
+
out = self.run(x, time, embedding=embedding, features=features)
|
179 |
+
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
180 |
+
# Scale conditional output using classifier-free guidance
|
181 |
+
return out_masked + (out - out_masked) * embedding_scale
|
182 |
+
else:
|
183 |
+
return self.run(x, time, embedding=embedding, features=features)
|
184 |
+
|
185 |
+
return x
|
186 |
+
|
187 |
+
|
188 |
+
class StyleTransformerBlock(nn.Module):
|
189 |
+
def __init__(
|
190 |
+
self,
|
191 |
+
features: int,
|
192 |
+
num_heads: int,
|
193 |
+
head_features: int,
|
194 |
+
style_dim: int,
|
195 |
+
multiplier: int,
|
196 |
+
use_rel_pos: bool,
|
197 |
+
rel_pos_num_buckets: Optional[int] = None,
|
198 |
+
rel_pos_max_distance: Optional[int] = None,
|
199 |
+
context_features: Optional[int] = None,
|
200 |
+
):
|
201 |
+
super().__init__()
|
202 |
+
|
203 |
+
self.use_cross_attention = exists(context_features) and context_features > 0
|
204 |
+
|
205 |
+
self.attention = StyleAttention(
|
206 |
+
features=features,
|
207 |
+
style_dim=style_dim,
|
208 |
+
num_heads=num_heads,
|
209 |
+
head_features=head_features,
|
210 |
+
use_rel_pos=use_rel_pos,
|
211 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
212 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
213 |
+
)
|
214 |
+
|
215 |
+
if self.use_cross_attention:
|
216 |
+
self.cross_attention = StyleAttention(
|
217 |
+
features=features,
|
218 |
+
style_dim=style_dim,
|
219 |
+
num_heads=num_heads,
|
220 |
+
head_features=head_features,
|
221 |
+
context_features=context_features,
|
222 |
+
use_rel_pos=use_rel_pos,
|
223 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
224 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
225 |
+
)
|
226 |
+
|
227 |
+
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
228 |
+
|
229 |
+
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
230 |
+
x = self.attention(x, s) + x
|
231 |
+
if self.use_cross_attention:
|
232 |
+
x = self.cross_attention(x, s, context=context) + x
|
233 |
+
x = self.feed_forward(x) + x
|
234 |
+
return x
|
235 |
+
|
236 |
+
class StyleAttention(nn.Module):
|
237 |
+
def __init__(
|
238 |
+
self,
|
239 |
+
features: int,
|
240 |
+
*,
|
241 |
+
style_dim: int,
|
242 |
+
head_features: int,
|
243 |
+
num_heads: int,
|
244 |
+
context_features: Optional[int] = None,
|
245 |
+
use_rel_pos: bool,
|
246 |
+
rel_pos_num_buckets: Optional[int] = None,
|
247 |
+
rel_pos_max_distance: Optional[int] = None,
|
248 |
+
):
|
249 |
+
super().__init__()
|
250 |
+
self.context_features = context_features
|
251 |
+
mid_features = head_features * num_heads
|
252 |
+
context_features = default(context_features, features)
|
253 |
+
|
254 |
+
self.norm = AdaLayerNorm(style_dim, features)
|
255 |
+
self.norm_context = AdaLayerNorm(style_dim, context_features)
|
256 |
+
self.to_q = nn.Linear(
|
257 |
+
in_features=features, out_features=mid_features, bias=False
|
258 |
+
)
|
259 |
+
self.to_kv = nn.Linear(
|
260 |
+
in_features=context_features, out_features=mid_features * 2, bias=False
|
261 |
+
)
|
262 |
+
self.attention = AttentionBase(
|
263 |
+
features,
|
264 |
+
num_heads=num_heads,
|
265 |
+
head_features=head_features,
|
266 |
+
use_rel_pos=use_rel_pos,
|
267 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
268 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
269 |
+
)
|
270 |
+
|
271 |
+
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
272 |
+
assert_message = "You must provide a context when using context_features"
|
273 |
+
assert not self.context_features or exists(context), assert_message
|
274 |
+
# Use context if provided
|
275 |
+
context = default(context, x)
|
276 |
+
# Normalize then compute q from input and k,v from context
|
277 |
+
x, context = self.norm(x, s), self.norm_context(context, s)
|
278 |
+
|
279 |
+
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
280 |
+
# Compute and return attention
|
281 |
+
return self.attention(q, k, v)
|
282 |
+
|
283 |
+
class Transformer1d(nn.Module):
|
284 |
+
def __init__(
|
285 |
+
self,
|
286 |
+
num_layers: int,
|
287 |
+
channels: int,
|
288 |
+
num_heads: int,
|
289 |
+
head_features: int,
|
290 |
+
multiplier: int,
|
291 |
+
use_context_time: bool = True,
|
292 |
+
use_rel_pos: bool = False,
|
293 |
+
context_features_multiplier: int = 1,
|
294 |
+
rel_pos_num_buckets: Optional[int] = None,
|
295 |
+
rel_pos_max_distance: Optional[int] = None,
|
296 |
+
context_features: Optional[int] = None,
|
297 |
+
context_embedding_features: Optional[int] = None,
|
298 |
+
embedding_max_length: int = 512,
|
299 |
+
):
|
300 |
+
super().__init__()
|
301 |
+
|
302 |
+
self.blocks = nn.ModuleList(
|
303 |
+
[
|
304 |
+
TransformerBlock(
|
305 |
+
features=channels + context_embedding_features,
|
306 |
+
head_features=head_features,
|
307 |
+
num_heads=num_heads,
|
308 |
+
multiplier=multiplier,
|
309 |
+
use_rel_pos=use_rel_pos,
|
310 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
311 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
312 |
+
)
|
313 |
+
for i in range(num_layers)
|
314 |
+
]
|
315 |
+
)
|
316 |
+
|
317 |
+
self.to_out = nn.Sequential(
|
318 |
+
Rearrange("b t c -> b c t"),
|
319 |
+
nn.Conv1d(
|
320 |
+
in_channels=channels + context_embedding_features,
|
321 |
+
out_channels=channels,
|
322 |
+
kernel_size=1,
|
323 |
+
),
|
324 |
+
)
|
325 |
+
|
326 |
+
use_context_features = exists(context_features)
|
327 |
+
self.use_context_features = use_context_features
|
328 |
+
self.use_context_time = use_context_time
|
329 |
+
|
330 |
+
if use_context_time or use_context_features:
|
331 |
+
context_mapping_features = channels + context_embedding_features
|
332 |
+
|
333 |
+
self.to_mapping = nn.Sequential(
|
334 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
335 |
+
nn.GELU(),
|
336 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
337 |
+
nn.GELU(),
|
338 |
+
)
|
339 |
+
|
340 |
+
if use_context_time:
|
341 |
+
assert exists(context_mapping_features)
|
342 |
+
self.to_time = nn.Sequential(
|
343 |
+
TimePositionalEmbedding(
|
344 |
+
dim=channels, out_features=context_mapping_features
|
345 |
+
),
|
346 |
+
nn.GELU(),
|
347 |
+
)
|
348 |
+
|
349 |
+
if use_context_features:
|
350 |
+
assert exists(context_features) and exists(context_mapping_features)
|
351 |
+
self.to_features = nn.Sequential(
|
352 |
+
nn.Linear(
|
353 |
+
in_features=context_features, out_features=context_mapping_features
|
354 |
+
),
|
355 |
+
nn.GELU(),
|
356 |
+
)
|
357 |
+
|
358 |
+
self.fixed_embedding = FixedEmbedding(
|
359 |
+
max_length=embedding_max_length, features=context_embedding_features
|
360 |
+
)
|
361 |
+
|
362 |
+
|
363 |
+
def get_mapping(
|
364 |
+
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
365 |
+
) -> Optional[Tensor]:
|
366 |
+
"""Combines context time features and features into mapping"""
|
367 |
+
items, mapping = [], None
|
368 |
+
# Compute time features
|
369 |
+
if self.use_context_time:
|
370 |
+
assert_message = "use_context_time=True but no time features provided"
|
371 |
+
assert exists(time), assert_message
|
372 |
+
items += [self.to_time(time)]
|
373 |
+
# Compute features
|
374 |
+
if self.use_context_features:
|
375 |
+
assert_message = "context_features exists but no features provided"
|
376 |
+
assert exists(features), assert_message
|
377 |
+
items += [self.to_features(features)]
|
378 |
+
|
379 |
+
# Compute joint mapping
|
380 |
+
if self.use_context_time or self.use_context_features:
|
381 |
+
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
382 |
+
mapping = self.to_mapping(mapping)
|
383 |
+
|
384 |
+
return mapping
|
385 |
+
|
386 |
+
def run(self, x, time, embedding, features):
|
387 |
+
|
388 |
+
mapping = self.get_mapping(time, features)
|
389 |
+
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
390 |
+
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
391 |
+
|
392 |
+
for block in self.blocks:
|
393 |
+
x = x + mapping
|
394 |
+
x = block(x)
|
395 |
+
|
396 |
+
x = x.mean(axis=1).unsqueeze(1)
|
397 |
+
x = self.to_out(x)
|
398 |
+
x = x.transpose(-1, -2)
|
399 |
+
|
400 |
+
return x
|
401 |
+
|
402 |
+
def forward(self, x: Tensor,
|
403 |
+
time: Tensor,
|
404 |
+
embedding_mask_proba: float = 0.0,
|
405 |
+
embedding: Optional[Tensor] = None,
|
406 |
+
features: Optional[Tensor] = None,
|
407 |
+
embedding_scale: float = 1.0) -> Tensor:
|
408 |
+
|
409 |
+
b, device = embedding.shape[0], embedding.device
|
410 |
+
fixed_embedding = self.fixed_embedding(embedding)
|
411 |
+
if embedding_mask_proba > 0.0:
|
412 |
+
# Randomly mask embedding
|
413 |
+
batch_mask = rand_bool(
|
414 |
+
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
415 |
+
)
|
416 |
+
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
417 |
+
|
418 |
+
if embedding_scale != 1.0:
|
419 |
+
# Compute both normal and fixed embedding outputs
|
420 |
+
out = self.run(x, time, embedding=embedding, features=features)
|
421 |
+
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
422 |
+
# Scale conditional output using classifier-free guidance
|
423 |
+
return out_masked + (out - out_masked) * embedding_scale
|
424 |
+
else:
|
425 |
+
return self.run(x, time, embedding=embedding, features=features)
|
426 |
+
|
427 |
+
return x
|
428 |
+
|
429 |
+
|
430 |
+
"""
|
431 |
+
Attention Components
|
432 |
+
"""
|
433 |
+
|
434 |
+
|
435 |
+
class RelativePositionBias(nn.Module):
|
436 |
+
def __init__(self, num_buckets: int, max_distance: int, num_heads: int):
|
437 |
+
super().__init__()
|
438 |
+
self.num_buckets = num_buckets
|
439 |
+
self.max_distance = max_distance
|
440 |
+
self.num_heads = num_heads
|
441 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
|
442 |
+
|
443 |
+
@staticmethod
|
444 |
+
def _relative_position_bucket(
|
445 |
+
relative_position: Tensor, num_buckets: int, max_distance: int
|
446 |
+
):
|
447 |
+
num_buckets //= 2
|
448 |
+
ret = (relative_position >= 0).to(torch.long) * num_buckets
|
449 |
+
n = torch.abs(relative_position)
|
450 |
+
|
451 |
+
max_exact = num_buckets // 2
|
452 |
+
is_small = n < max_exact
|
453 |
+
|
454 |
+
val_if_large = (
|
455 |
+
max_exact
|
456 |
+
+ (
|
457 |
+
torch.log(n.float() / max_exact)
|
458 |
+
/ log(max_distance / max_exact)
|
459 |
+
* (num_buckets - max_exact)
|
460 |
+
).long()
|
461 |
+
)
|
462 |
+
val_if_large = torch.min(
|
463 |
+
val_if_large, torch.full_like(val_if_large, num_buckets - 1)
|
464 |
+
)
|
465 |
+
|
466 |
+
ret += torch.where(is_small, n, val_if_large)
|
467 |
+
return ret
|
468 |
+
|
469 |
+
def forward(self, num_queries: int, num_keys: int) -> Tensor:
|
470 |
+
i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device
|
471 |
+
q_pos = torch.arange(j - i, j, dtype=torch.long, device=device)
|
472 |
+
k_pos = torch.arange(j, dtype=torch.long, device=device)
|
473 |
+
rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1")
|
474 |
+
|
475 |
+
relative_position_bucket = self._relative_position_bucket(
|
476 |
+
rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance
|
477 |
+
)
|
478 |
+
|
479 |
+
bias = self.relative_attention_bias(relative_position_bucket)
|
480 |
+
bias = rearrange(bias, "m n h -> 1 h m n")
|
481 |
+
return bias
|
482 |
+
|
483 |
+
|
484 |
+
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
485 |
+
mid_features = features * multiplier
|
486 |
+
return nn.Sequential(
|
487 |
+
nn.Linear(in_features=features, out_features=mid_features),
|
488 |
+
nn.GELU(),
|
489 |
+
nn.Linear(in_features=mid_features, out_features=features),
|
490 |
+
)
|
491 |
+
|
492 |
+
|
493 |
+
class AttentionBase(nn.Module):
|
494 |
+
def __init__(
|
495 |
+
self,
|
496 |
+
features: int,
|
497 |
+
*,
|
498 |
+
head_features: int,
|
499 |
+
num_heads: int,
|
500 |
+
use_rel_pos: bool,
|
501 |
+
out_features: Optional[int] = None,
|
502 |
+
rel_pos_num_buckets: Optional[int] = None,
|
503 |
+
rel_pos_max_distance: Optional[int] = None,
|
504 |
+
):
|
505 |
+
super().__init__()
|
506 |
+
self.scale = head_features ** -0.5
|
507 |
+
self.num_heads = num_heads
|
508 |
+
self.use_rel_pos = use_rel_pos
|
509 |
+
mid_features = head_features * num_heads
|
510 |
+
|
511 |
+
if use_rel_pos:
|
512 |
+
assert exists(rel_pos_num_buckets) and exists(rel_pos_max_distance)
|
513 |
+
self.rel_pos = RelativePositionBias(
|
514 |
+
num_buckets=rel_pos_num_buckets,
|
515 |
+
max_distance=rel_pos_max_distance,
|
516 |
+
num_heads=num_heads,
|
517 |
+
)
|
518 |
+
if out_features is None:
|
519 |
+
out_features = features
|
520 |
+
|
521 |
+
self.to_out = nn.Linear(in_features=mid_features, out_features=out_features)
|
522 |
+
|
523 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
524 |
+
# Split heads
|
525 |
+
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
|
526 |
+
# Compute similarity matrix
|
527 |
+
sim = einsum("... n d, ... m d -> ... n m", q, k)
|
528 |
+
sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim
|
529 |
+
sim = sim * self.scale
|
530 |
+
# Get attention matrix with softmax
|
531 |
+
attn = sim.softmax(dim=-1)
|
532 |
+
# Compute values
|
533 |
+
out = einsum("... n m, ... m d -> ... n d", attn, v)
|
534 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
535 |
+
return self.to_out(out)
|
536 |
+
|
537 |
+
|
538 |
+
class Attention(nn.Module):
|
539 |
+
def __init__(
|
540 |
+
self,
|
541 |
+
features: int,
|
542 |
+
*,
|
543 |
+
head_features: int,
|
544 |
+
num_heads: int,
|
545 |
+
out_features: Optional[int] = None,
|
546 |
+
context_features: Optional[int] = None,
|
547 |
+
use_rel_pos: bool,
|
548 |
+
rel_pos_num_buckets: Optional[int] = None,
|
549 |
+
rel_pos_max_distance: Optional[int] = None,
|
550 |
+
):
|
551 |
+
super().__init__()
|
552 |
+
self.context_features = context_features
|
553 |
+
mid_features = head_features * num_heads
|
554 |
+
context_features = default(context_features, features)
|
555 |
+
|
556 |
+
self.norm = nn.LayerNorm(features)
|
557 |
+
self.norm_context = nn.LayerNorm(context_features)
|
558 |
+
self.to_q = nn.Linear(
|
559 |
+
in_features=features, out_features=mid_features, bias=False
|
560 |
+
)
|
561 |
+
self.to_kv = nn.Linear(
|
562 |
+
in_features=context_features, out_features=mid_features * 2, bias=False
|
563 |
+
)
|
564 |
+
|
565 |
+
self.attention = AttentionBase(
|
566 |
+
features,
|
567 |
+
out_features=out_features,
|
568 |
+
num_heads=num_heads,
|
569 |
+
head_features=head_features,
|
570 |
+
use_rel_pos=use_rel_pos,
|
571 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
572 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
573 |
+
)
|
574 |
+
|
575 |
+
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
576 |
+
assert_message = "You must provide a context when using context_features"
|
577 |
+
assert not self.context_features or exists(context), assert_message
|
578 |
+
# Use context if provided
|
579 |
+
context = default(context, x)
|
580 |
+
# Normalize then compute q from input and k,v from context
|
581 |
+
x, context = self.norm(x), self.norm_context(context)
|
582 |
+
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
583 |
+
# Compute and return attention
|
584 |
+
return self.attention(q, k, v)
|
585 |
+
|
586 |
+
|
587 |
+
"""
|
588 |
+
Transformer Blocks
|
589 |
+
"""
|
590 |
+
|
591 |
+
|
592 |
+
class TransformerBlock(nn.Module):
|
593 |
+
def __init__(
|
594 |
+
self,
|
595 |
+
features: int,
|
596 |
+
num_heads: int,
|
597 |
+
head_features: int,
|
598 |
+
multiplier: int,
|
599 |
+
use_rel_pos: bool,
|
600 |
+
rel_pos_num_buckets: Optional[int] = None,
|
601 |
+
rel_pos_max_distance: Optional[int] = None,
|
602 |
+
context_features: Optional[int] = None,
|
603 |
+
):
|
604 |
+
super().__init__()
|
605 |
+
|
606 |
+
self.use_cross_attention = exists(context_features) and context_features > 0
|
607 |
+
|
608 |
+
self.attention = Attention(
|
609 |
+
features=features,
|
610 |
+
num_heads=num_heads,
|
611 |
+
head_features=head_features,
|
612 |
+
use_rel_pos=use_rel_pos,
|
613 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
614 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
615 |
+
)
|
616 |
+
|
617 |
+
if self.use_cross_attention:
|
618 |
+
self.cross_attention = Attention(
|
619 |
+
features=features,
|
620 |
+
num_heads=num_heads,
|
621 |
+
head_features=head_features,
|
622 |
+
context_features=context_features,
|
623 |
+
use_rel_pos=use_rel_pos,
|
624 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
625 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
626 |
+
)
|
627 |
+
|
628 |
+
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
629 |
+
|
630 |
+
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
631 |
+
x = self.attention(x) + x
|
632 |
+
if self.use_cross_attention:
|
633 |
+
x = self.cross_attention(x, context=context) + x
|
634 |
+
x = self.feed_forward(x) + x
|
635 |
+
return x
|
636 |
+
|
637 |
+
|
638 |
+
|
639 |
+
"""
|
640 |
+
Time Embeddings
|
641 |
+
"""
|
642 |
+
|
643 |
+
|
644 |
+
class SinusoidalEmbedding(nn.Module):
|
645 |
+
def __init__(self, dim: int):
|
646 |
+
super().__init__()
|
647 |
+
self.dim = dim
|
648 |
+
|
649 |
+
def forward(self, x: Tensor) -> Tensor:
|
650 |
+
device, half_dim = x.device, self.dim // 2
|
651 |
+
emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
|
652 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
653 |
+
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
|
654 |
+
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
655 |
+
|
656 |
+
|
657 |
+
class LearnedPositionalEmbedding(nn.Module):
|
658 |
+
"""Used for continuous time"""
|
659 |
+
|
660 |
+
def __init__(self, dim: int):
|
661 |
+
super().__init__()
|
662 |
+
assert (dim % 2) == 0
|
663 |
+
half_dim = dim // 2
|
664 |
+
self.weights = nn.Parameter(torch.randn(half_dim))
|
665 |
+
|
666 |
+
def forward(self, x: Tensor) -> Tensor:
|
667 |
+
x = rearrange(x, "b -> b 1")
|
668 |
+
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
|
669 |
+
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
670 |
+
fouriered = torch.cat((x, fouriered), dim=-1)
|
671 |
+
return fouriered
|
672 |
+
|
673 |
+
|
674 |
+
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
|
675 |
+
return nn.Sequential(
|
676 |
+
LearnedPositionalEmbedding(dim),
|
677 |
+
nn.Linear(in_features=dim + 1, out_features=out_features),
|
678 |
+
)
|
679 |
+
|
680 |
+
class FixedEmbedding(nn.Module):
|
681 |
+
def __init__(self, max_length: int, features: int):
|
682 |
+
super().__init__()
|
683 |
+
self.max_length = max_length
|
684 |
+
self.embedding = nn.Embedding(max_length, features)
|
685 |
+
|
686 |
+
def forward(self, x: Tensor) -> Tensor:
|
687 |
+
batch_size, length, device = *x.shape[0:2], x.device
|
688 |
+
assert_message = "Input sequence length must be <= max_length"
|
689 |
+
assert length <= self.max_length, assert_message
|
690 |
+
position = torch.arange(length, device=device)
|
691 |
+
fixed_embedding = self.embedding(position)
|
692 |
+
fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size)
|
693 |
+
return fixed_embedding
|
Modules/diffusion/sampler.py
ADDED
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import atan, cos, pi, sin, sqrt
|
2 |
+
from typing import Any, Callable, List, Optional, Tuple, Type
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from einops import rearrange, reduce
|
8 |
+
from torch import Tensor
|
9 |
+
|
10 |
+
from .utils import *
|
11 |
+
|
12 |
+
"""
|
13 |
+
Diffusion Training
|
14 |
+
"""
|
15 |
+
|
16 |
+
""" Distributions """
|
17 |
+
|
18 |
+
|
19 |
+
class Distribution:
|
20 |
+
def __call__(self, num_samples: int, device: torch.device):
|
21 |
+
raise NotImplementedError()
|
22 |
+
|
23 |
+
|
24 |
+
class LogNormalDistribution(Distribution):
|
25 |
+
def __init__(self, mean: float, std: float):
|
26 |
+
self.mean = mean
|
27 |
+
self.std = std
|
28 |
+
|
29 |
+
def __call__(
|
30 |
+
self, num_samples: int, device: torch.device = torch.device("cpu")
|
31 |
+
) -> Tensor:
|
32 |
+
normal = self.mean + self.std * torch.randn((num_samples,), device=device)
|
33 |
+
return normal.exp()
|
34 |
+
|
35 |
+
|
36 |
+
class UniformDistribution(Distribution):
|
37 |
+
def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
|
38 |
+
return torch.rand(num_samples, device=device)
|
39 |
+
|
40 |
+
|
41 |
+
class VKDistribution(Distribution):
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
min_value: float = 0.0,
|
45 |
+
max_value: float = float("inf"),
|
46 |
+
sigma_data: float = 1.0,
|
47 |
+
):
|
48 |
+
self.min_value = min_value
|
49 |
+
self.max_value = max_value
|
50 |
+
self.sigma_data = sigma_data
|
51 |
+
|
52 |
+
def __call__(
|
53 |
+
self, num_samples: int, device: torch.device = torch.device("cpu")
|
54 |
+
) -> Tensor:
|
55 |
+
sigma_data = self.sigma_data
|
56 |
+
min_cdf = atan(self.min_value / sigma_data) * 2 / pi
|
57 |
+
max_cdf = atan(self.max_value / sigma_data) * 2 / pi
|
58 |
+
u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf
|
59 |
+
return torch.tan(u * pi / 2) * sigma_data
|
60 |
+
|
61 |
+
|
62 |
+
""" Diffusion Classes """
|
63 |
+
|
64 |
+
|
65 |
+
def pad_dims(x: Tensor, ndim: int) -> Tensor:
|
66 |
+
# Pads additional ndims to the right of the tensor
|
67 |
+
return x.view(*x.shape, *((1,) * ndim))
|
68 |
+
|
69 |
+
|
70 |
+
def clip(x: Tensor, dynamic_threshold: float = 0.0):
|
71 |
+
if dynamic_threshold == 0.0:
|
72 |
+
return x.clamp(-1.0, 1.0)
|
73 |
+
else:
|
74 |
+
# Dynamic thresholding
|
75 |
+
# Find dynamic threshold quantile for each batch
|
76 |
+
x_flat = rearrange(x, "b ... -> b (...)")
|
77 |
+
scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
|
78 |
+
# Clamp to a min of 1.0
|
79 |
+
scale.clamp_(min=1.0)
|
80 |
+
# Clamp all values and scale
|
81 |
+
scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
|
82 |
+
x = x.clamp(-scale, scale) / scale
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
def to_batch(
|
87 |
+
batch_size: int,
|
88 |
+
device: torch.device,
|
89 |
+
x: Optional[float] = None,
|
90 |
+
xs: Optional[Tensor] = None,
|
91 |
+
) -> Tensor:
|
92 |
+
assert exists(x) ^ exists(xs), "Either x or xs must be provided"
|
93 |
+
# If x provided use the same for all batch items
|
94 |
+
if exists(x):
|
95 |
+
xs = torch.full(size=(batch_size,), fill_value=x).to(device)
|
96 |
+
assert exists(xs)
|
97 |
+
return xs
|
98 |
+
|
99 |
+
|
100 |
+
class Diffusion(nn.Module):
|
101 |
+
|
102 |
+
alias: str = ""
|
103 |
+
|
104 |
+
"""Base diffusion class"""
|
105 |
+
|
106 |
+
def denoise_fn(
|
107 |
+
self,
|
108 |
+
x_noisy: Tensor,
|
109 |
+
sigmas: Optional[Tensor] = None,
|
110 |
+
sigma: Optional[float] = None,
|
111 |
+
**kwargs,
|
112 |
+
) -> Tensor:
|
113 |
+
raise NotImplementedError("Diffusion class missing denoise_fn")
|
114 |
+
|
115 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
116 |
+
raise NotImplementedError("Diffusion class missing forward function")
|
117 |
+
|
118 |
+
|
119 |
+
class VDiffusion(Diffusion):
|
120 |
+
|
121 |
+
alias = "v"
|
122 |
+
|
123 |
+
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
124 |
+
super().__init__()
|
125 |
+
self.net = net
|
126 |
+
self.sigma_distribution = sigma_distribution
|
127 |
+
|
128 |
+
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
|
129 |
+
angle = sigmas * pi / 2
|
130 |
+
alpha = torch.cos(angle)
|
131 |
+
beta = torch.sin(angle)
|
132 |
+
return alpha, beta
|
133 |
+
|
134 |
+
def denoise_fn(
|
135 |
+
self,
|
136 |
+
x_noisy: Tensor,
|
137 |
+
sigmas: Optional[Tensor] = None,
|
138 |
+
sigma: Optional[float] = None,
|
139 |
+
**kwargs,
|
140 |
+
) -> Tensor:
|
141 |
+
batch_size, device = x_noisy.shape[0], x_noisy.device
|
142 |
+
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
143 |
+
return self.net(x_noisy, sigmas, **kwargs)
|
144 |
+
|
145 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
146 |
+
batch_size, device = x.shape[0], x.device
|
147 |
+
|
148 |
+
# Sample amount of noise to add for each batch element
|
149 |
+
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
150 |
+
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
151 |
+
|
152 |
+
# Get noise
|
153 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
154 |
+
|
155 |
+
# Combine input and noise weighted by half-circle
|
156 |
+
alpha, beta = self.get_alpha_beta(sigmas_padded)
|
157 |
+
x_noisy = x * alpha + noise * beta
|
158 |
+
x_target = noise * alpha - x * beta
|
159 |
+
|
160 |
+
# Denoise and return loss
|
161 |
+
x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs)
|
162 |
+
return F.mse_loss(x_denoised, x_target)
|
163 |
+
|
164 |
+
|
165 |
+
class KDiffusion(Diffusion):
|
166 |
+
"""Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
|
167 |
+
|
168 |
+
alias = "k"
|
169 |
+
|
170 |
+
def __init__(
|
171 |
+
self,
|
172 |
+
net: nn.Module,
|
173 |
+
*,
|
174 |
+
sigma_distribution: Distribution,
|
175 |
+
sigma_data: float, # data distribution standard deviation
|
176 |
+
dynamic_threshold: float = 0.0,
|
177 |
+
):
|
178 |
+
super().__init__()
|
179 |
+
self.net = net
|
180 |
+
self.sigma_data = sigma_data
|
181 |
+
self.sigma_distribution = sigma_distribution
|
182 |
+
self.dynamic_threshold = dynamic_threshold
|
183 |
+
|
184 |
+
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
185 |
+
sigma_data = self.sigma_data
|
186 |
+
c_noise = torch.log(sigmas) * 0.25
|
187 |
+
sigmas = rearrange(sigmas, "b -> b 1 1")
|
188 |
+
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
189 |
+
c_out = sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
190 |
+
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
191 |
+
return c_skip, c_out, c_in, c_noise
|
192 |
+
|
193 |
+
def denoise_fn(
|
194 |
+
self,
|
195 |
+
x_noisy: Tensor,
|
196 |
+
sigmas: Optional[Tensor] = None,
|
197 |
+
sigma: Optional[float] = None,
|
198 |
+
**kwargs,
|
199 |
+
) -> Tensor:
|
200 |
+
batch_size, device = x_noisy.shape[0], x_noisy.device
|
201 |
+
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
202 |
+
|
203 |
+
# Predict network output and add skip connection
|
204 |
+
c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
|
205 |
+
x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
|
206 |
+
x_denoised = c_skip * x_noisy + c_out * x_pred
|
207 |
+
|
208 |
+
return x_denoised
|
209 |
+
|
210 |
+
def loss_weight(self, sigmas: Tensor) -> Tensor:
|
211 |
+
# Computes weight depending on data distribution
|
212 |
+
return (sigmas ** 2 + self.sigma_data ** 2) * (sigmas * self.sigma_data) ** -2
|
213 |
+
|
214 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
215 |
+
batch_size, device = x.shape[0], x.device
|
216 |
+
from einops import rearrange, reduce
|
217 |
+
|
218 |
+
# Sample amount of noise to add for each batch element
|
219 |
+
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
220 |
+
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
221 |
+
|
222 |
+
# Add noise to input
|
223 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
224 |
+
x_noisy = x + sigmas_padded * noise
|
225 |
+
|
226 |
+
# Compute denoised values
|
227 |
+
x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs)
|
228 |
+
|
229 |
+
# Compute weighted loss
|
230 |
+
losses = F.mse_loss(x_denoised, x, reduction="none")
|
231 |
+
losses = reduce(losses, "b ... -> b", "mean")
|
232 |
+
losses = losses * self.loss_weight(sigmas)
|
233 |
+
loss = losses.mean()
|
234 |
+
return loss
|
235 |
+
|
236 |
+
|
237 |
+
class VKDiffusion(Diffusion):
|
238 |
+
|
239 |
+
alias = "vk"
|
240 |
+
|
241 |
+
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
242 |
+
super().__init__()
|
243 |
+
self.net = net
|
244 |
+
self.sigma_distribution = sigma_distribution
|
245 |
+
|
246 |
+
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
247 |
+
sigma_data = 1.0
|
248 |
+
sigmas = rearrange(sigmas, "b -> b 1 1")
|
249 |
+
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
250 |
+
c_out = -sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
251 |
+
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
252 |
+
return c_skip, c_out, c_in
|
253 |
+
|
254 |
+
def sigma_to_t(self, sigmas: Tensor) -> Tensor:
|
255 |
+
return sigmas.atan() / pi * 2
|
256 |
+
|
257 |
+
def t_to_sigma(self, t: Tensor) -> Tensor:
|
258 |
+
return (t * pi / 2).tan()
|
259 |
+
|
260 |
+
def denoise_fn(
|
261 |
+
self,
|
262 |
+
x_noisy: Tensor,
|
263 |
+
sigmas: Optional[Tensor] = None,
|
264 |
+
sigma: Optional[float] = None,
|
265 |
+
**kwargs,
|
266 |
+
) -> Tensor:
|
267 |
+
batch_size, device = x_noisy.shape[0], x_noisy.device
|
268 |
+
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
269 |
+
|
270 |
+
# Predict network output and add skip connection
|
271 |
+
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
272 |
+
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
273 |
+
x_denoised = c_skip * x_noisy + c_out * x_pred
|
274 |
+
return x_denoised
|
275 |
+
|
276 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
277 |
+
batch_size, device = x.shape[0], x.device
|
278 |
+
|
279 |
+
# Sample amount of noise to add for each batch element
|
280 |
+
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
281 |
+
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
282 |
+
|
283 |
+
# Add noise to input
|
284 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
285 |
+
x_noisy = x + sigmas_padded * noise
|
286 |
+
|
287 |
+
# Compute model output
|
288 |
+
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
289 |
+
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
290 |
+
|
291 |
+
# Compute v-objective target
|
292 |
+
v_target = (x - c_skip * x_noisy) / (c_out + 1e-7)
|
293 |
+
|
294 |
+
# Compute loss
|
295 |
+
loss = F.mse_loss(x_pred, v_target)
|
296 |
+
return loss
|
297 |
+
|
298 |
+
|
299 |
+
"""
|
300 |
+
Diffusion Sampling
|
301 |
+
"""
|
302 |
+
|
303 |
+
""" Schedules """
|
304 |
+
|
305 |
+
|
306 |
+
class Schedule(nn.Module):
|
307 |
+
"""Interface used by different sampling schedules"""
|
308 |
+
|
309 |
+
def forward(self, num_steps: int, device: torch.device) -> Tensor:
|
310 |
+
raise NotImplementedError()
|
311 |
+
|
312 |
+
|
313 |
+
class LinearSchedule(Schedule):
|
314 |
+
def forward(self, num_steps: int, device: Any) -> Tensor:
|
315 |
+
sigmas = torch.linspace(1, 0, num_steps + 1)[:-1]
|
316 |
+
return sigmas
|
317 |
+
|
318 |
+
|
319 |
+
class KarrasSchedule(Schedule):
|
320 |
+
"""https://arxiv.org/abs/2206.00364 equation 5"""
|
321 |
+
|
322 |
+
def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
|
323 |
+
super().__init__()
|
324 |
+
self.sigma_min = sigma_min
|
325 |
+
self.sigma_max = sigma_max
|
326 |
+
self.rho = rho
|
327 |
+
|
328 |
+
def forward(self, num_steps: int, device: Any) -> Tensor:
|
329 |
+
rho_inv = 1.0 / self.rho
|
330 |
+
steps = torch.arange(num_steps, device=device, dtype=torch.float32)
|
331 |
+
sigmas = (
|
332 |
+
self.sigma_max ** rho_inv
|
333 |
+
+ (steps / (num_steps - 1))
|
334 |
+
* (self.sigma_min ** rho_inv - self.sigma_max ** rho_inv)
|
335 |
+
) ** self.rho
|
336 |
+
sigmas = F.pad(sigmas, pad=(0, 1), value=0.0)
|
337 |
+
return sigmas
|
338 |
+
|
339 |
+
|
340 |
+
""" Samplers """
|
341 |
+
|
342 |
+
|
343 |
+
class Sampler(nn.Module):
|
344 |
+
|
345 |
+
diffusion_types: List[Type[Diffusion]] = []
|
346 |
+
|
347 |
+
def forward(
|
348 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
349 |
+
) -> Tensor:
|
350 |
+
raise NotImplementedError()
|
351 |
+
|
352 |
+
def inpaint(
|
353 |
+
self,
|
354 |
+
source: Tensor,
|
355 |
+
mask: Tensor,
|
356 |
+
fn: Callable,
|
357 |
+
sigmas: Tensor,
|
358 |
+
num_steps: int,
|
359 |
+
num_resamples: int,
|
360 |
+
) -> Tensor:
|
361 |
+
raise NotImplementedError("Inpainting not available with current sampler")
|
362 |
+
|
363 |
+
|
364 |
+
class VSampler(Sampler):
|
365 |
+
|
366 |
+
diffusion_types = [VDiffusion]
|
367 |
+
|
368 |
+
def get_alpha_beta(self, sigma: float) -> Tuple[float, float]:
|
369 |
+
angle = sigma * pi / 2
|
370 |
+
alpha = cos(angle)
|
371 |
+
beta = sin(angle)
|
372 |
+
return alpha, beta
|
373 |
+
|
374 |
+
def forward(
|
375 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
376 |
+
) -> Tensor:
|
377 |
+
x = sigmas[0] * noise
|
378 |
+
alpha, beta = self.get_alpha_beta(sigmas[0].item())
|
379 |
+
|
380 |
+
for i in range(num_steps - 1):
|
381 |
+
is_last = i == num_steps - 1
|
382 |
+
|
383 |
+
x_denoised = fn(x, sigma=sigmas[i])
|
384 |
+
x_pred = x * alpha - x_denoised * beta
|
385 |
+
x_eps = x * beta + x_denoised * alpha
|
386 |
+
|
387 |
+
if not is_last:
|
388 |
+
alpha, beta = self.get_alpha_beta(sigmas[i + 1].item())
|
389 |
+
x = x_pred * alpha + x_eps * beta
|
390 |
+
|
391 |
+
return x_pred
|
392 |
+
|
393 |
+
|
394 |
+
class KarrasSampler(Sampler):
|
395 |
+
"""https://arxiv.org/abs/2206.00364 algorithm 1"""
|
396 |
+
|
397 |
+
diffusion_types = [KDiffusion, VKDiffusion]
|
398 |
+
|
399 |
+
def __init__(
|
400 |
+
self,
|
401 |
+
s_tmin: float = 0,
|
402 |
+
s_tmax: float = float("inf"),
|
403 |
+
s_churn: float = 0.0,
|
404 |
+
s_noise: float = 1.0,
|
405 |
+
):
|
406 |
+
super().__init__()
|
407 |
+
self.s_tmin = s_tmin
|
408 |
+
self.s_tmax = s_tmax
|
409 |
+
self.s_noise = s_noise
|
410 |
+
self.s_churn = s_churn
|
411 |
+
|
412 |
+
def step(
|
413 |
+
self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float
|
414 |
+
) -> Tensor:
|
415 |
+
"""Algorithm 2 (step)"""
|
416 |
+
# Select temporarily increased noise level
|
417 |
+
sigma_hat = sigma + gamma * sigma
|
418 |
+
# Add noise to move from sigma to sigma_hat
|
419 |
+
epsilon = self.s_noise * torch.randn_like(x)
|
420 |
+
x_hat = x + sqrt(sigma_hat ** 2 - sigma ** 2) * epsilon
|
421 |
+
# Evaluate ∂x/∂sigma at sigma_hat
|
422 |
+
d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat
|
423 |
+
# Take euler step from sigma_hat to sigma_next
|
424 |
+
x_next = x_hat + (sigma_next - sigma_hat) * d
|
425 |
+
# Second order correction
|
426 |
+
if sigma_next != 0:
|
427 |
+
model_out_next = fn(x_next, sigma=sigma_next)
|
428 |
+
d_prime = (x_next - model_out_next) / sigma_next
|
429 |
+
x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime)
|
430 |
+
return x_next
|
431 |
+
|
432 |
+
def forward(
|
433 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
434 |
+
) -> Tensor:
|
435 |
+
x = sigmas[0] * noise
|
436 |
+
# Compute gammas
|
437 |
+
gammas = torch.where(
|
438 |
+
(sigmas >= self.s_tmin) & (sigmas <= self.s_tmax),
|
439 |
+
min(self.s_churn / num_steps, sqrt(2) - 1),
|
440 |
+
0.0,
|
441 |
+
)
|
442 |
+
# Denoise to sample
|
443 |
+
for i in range(num_steps - 1):
|
444 |
+
x = self.step(
|
445 |
+
x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i] # type: ignore # noqa
|
446 |
+
)
|
447 |
+
|
448 |
+
return x
|
449 |
+
|
450 |
+
|
451 |
+
class AEulerSampler(Sampler):
|
452 |
+
|
453 |
+
diffusion_types = [KDiffusion, VKDiffusion]
|
454 |
+
|
455 |
+
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]:
|
456 |
+
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
457 |
+
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
458 |
+
return sigma_up, sigma_down
|
459 |
+
|
460 |
+
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
461 |
+
# Sigma steps
|
462 |
+
sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next)
|
463 |
+
# Derivative at sigma (∂x/∂sigma)
|
464 |
+
d = (x - fn(x, sigma=sigma)) / sigma
|
465 |
+
# Euler method
|
466 |
+
x_next = x + d * (sigma_down - sigma)
|
467 |
+
# Add randomness
|
468 |
+
x_next = x_next + torch.randn_like(x) * sigma_up
|
469 |
+
return x_next
|
470 |
+
|
471 |
+
def forward(
|
472 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
473 |
+
) -> Tensor:
|
474 |
+
x = sigmas[0] * noise
|
475 |
+
# Denoise to sample
|
476 |
+
for i in range(num_steps - 1):
|
477 |
+
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
478 |
+
return x
|
479 |
+
|
480 |
+
|
481 |
+
class ADPM2Sampler(Sampler):
|
482 |
+
"""https://www.desmos.com/calculator/jbxjlqd9mb"""
|
483 |
+
|
484 |
+
diffusion_types = [KDiffusion, VKDiffusion]
|
485 |
+
|
486 |
+
def __init__(self, rho: float = 1.0):
|
487 |
+
super().__init__()
|
488 |
+
self.rho = rho
|
489 |
+
|
490 |
+
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float, float]:
|
491 |
+
r = self.rho
|
492 |
+
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
493 |
+
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
494 |
+
sigma_mid = ((sigma ** (1 / r) + sigma_down ** (1 / r)) / 2) ** r
|
495 |
+
return sigma_up, sigma_down, sigma_mid
|
496 |
+
|
497 |
+
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
498 |
+
# Sigma steps
|
499 |
+
sigma_up, sigma_down, sigma_mid = self.get_sigmas(sigma, sigma_next)
|
500 |
+
# Derivative at sigma (∂x/∂sigma)
|
501 |
+
d = (x - fn(x, sigma=sigma)) / sigma
|
502 |
+
# Denoise to midpoint
|
503 |
+
x_mid = x + d * (sigma_mid - sigma)
|
504 |
+
# Derivative at sigma_mid (∂x_mid/∂sigma_mid)
|
505 |
+
d_mid = (x_mid - fn(x_mid, sigma=sigma_mid)) / sigma_mid
|
506 |
+
# Denoise to next
|
507 |
+
x = x + d_mid * (sigma_down - sigma)
|
508 |
+
# Add randomness
|
509 |
+
x_next = x + torch.randn_like(x) * sigma_up
|
510 |
+
return x_next
|
511 |
+
|
512 |
+
def forward(
|
513 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
514 |
+
) -> Tensor:
|
515 |
+
x = sigmas[0] * noise
|
516 |
+
# Denoise to sample
|
517 |
+
for i in range(num_steps - 1):
|
518 |
+
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
519 |
+
return x
|
520 |
+
|
521 |
+
def inpaint(
|
522 |
+
self,
|
523 |
+
source: Tensor,
|
524 |
+
mask: Tensor,
|
525 |
+
fn: Callable,
|
526 |
+
sigmas: Tensor,
|
527 |
+
num_steps: int,
|
528 |
+
num_resamples: int,
|
529 |
+
) -> Tensor:
|
530 |
+
x = sigmas[0] * torch.randn_like(source)
|
531 |
+
|
532 |
+
for i in range(num_steps - 1):
|
533 |
+
# Noise source to current noise level
|
534 |
+
source_noisy = source + sigmas[i] * torch.randn_like(source)
|
535 |
+
for r in range(num_resamples):
|
536 |
+
# Merge noisy source and current then denoise
|
537 |
+
x = source_noisy * mask + x * ~mask
|
538 |
+
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
539 |
+
# Renoise if not last resample step
|
540 |
+
if r < num_resamples - 1:
|
541 |
+
sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2)
|
542 |
+
x = x + sigma * torch.randn_like(x)
|
543 |
+
|
544 |
+
return source * mask + x * ~mask
|
545 |
+
|
546 |
+
|
547 |
+
""" Main Classes """
|
548 |
+
|
549 |
+
|
550 |
+
class DiffusionSampler(nn.Module):
|
551 |
+
def __init__(
|
552 |
+
self,
|
553 |
+
diffusion: Diffusion,
|
554 |
+
*,
|
555 |
+
sampler: Sampler,
|
556 |
+
sigma_schedule: Schedule,
|
557 |
+
num_steps: Optional[int] = None,
|
558 |
+
clamp: bool = True,
|
559 |
+
):
|
560 |
+
super().__init__()
|
561 |
+
self.denoise_fn = diffusion.denoise_fn
|
562 |
+
self.sampler = sampler
|
563 |
+
self.sigma_schedule = sigma_schedule
|
564 |
+
self.num_steps = num_steps
|
565 |
+
self.clamp = clamp
|
566 |
+
|
567 |
+
# Check sampler is compatible with diffusion type
|
568 |
+
sampler_class = sampler.__class__.__name__
|
569 |
+
diffusion_class = diffusion.__class__.__name__
|
570 |
+
message = f"{sampler_class} incompatible with {diffusion_class}"
|
571 |
+
assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
|
572 |
+
|
573 |
+
def forward(
|
574 |
+
self, noise: Tensor, num_steps: Optional[int] = None, **kwargs
|
575 |
+
) -> Tensor:
|
576 |
+
device = noise.device
|
577 |
+
num_steps = default(num_steps, self.num_steps) # type: ignore
|
578 |
+
assert exists(num_steps), "Parameter `num_steps` must be provided"
|
579 |
+
# Compute sigmas using schedule
|
580 |
+
sigmas = self.sigma_schedule(num_steps, device)
|
581 |
+
# Append additional kwargs to denoise function (used e.g. for conditional unet)
|
582 |
+
fn = lambda *a, **ka: self.denoise_fn(*a, **{**ka, **kwargs}) # noqa
|
583 |
+
# Sample using sampler
|
584 |
+
x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
|
585 |
+
x = x.clamp(-1.0, 1.0) if self.clamp else x
|
586 |
+
return x
|
587 |
+
|
588 |
+
|
589 |
+
class DiffusionInpainter(nn.Module):
|
590 |
+
def __init__(
|
591 |
+
self,
|
592 |
+
diffusion: Diffusion,
|
593 |
+
*,
|
594 |
+
num_steps: int,
|
595 |
+
num_resamples: int,
|
596 |
+
sampler: Sampler,
|
597 |
+
sigma_schedule: Schedule,
|
598 |
+
):
|
599 |
+
super().__init__()
|
600 |
+
self.denoise_fn = diffusion.denoise_fn
|
601 |
+
self.num_steps = num_steps
|
602 |
+
self.num_resamples = num_resamples
|
603 |
+
self.inpaint_fn = sampler.inpaint
|
604 |
+
self.sigma_schedule = sigma_schedule
|
605 |
+
|
606 |
+
@torch.no_grad()
|
607 |
+
def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor:
|
608 |
+
x = self.inpaint_fn(
|
609 |
+
source=inpaint,
|
610 |
+
mask=inpaint_mask,
|
611 |
+
fn=self.denoise_fn,
|
612 |
+
sigmas=self.sigma_schedule(self.num_steps, inpaint.device),
|
613 |
+
num_steps=self.num_steps,
|
614 |
+
num_resamples=self.num_resamples,
|
615 |
+
)
|
616 |
+
return x
|
617 |
+
|
618 |
+
|
619 |
+
def sequential_mask(like: Tensor, start: int) -> Tensor:
|
620 |
+
length, device = like.shape[2], like.device
|
621 |
+
mask = torch.ones_like(like, dtype=torch.bool)
|
622 |
+
mask[:, :, start:] = torch.zeros((length - start,), device=device)
|
623 |
+
return mask
|
624 |
+
|
625 |
+
|
626 |
+
class SpanBySpanComposer(nn.Module):
|
627 |
+
def __init__(
|
628 |
+
self,
|
629 |
+
inpainter: DiffusionInpainter,
|
630 |
+
*,
|
631 |
+
num_spans: int,
|
632 |
+
):
|
633 |
+
super().__init__()
|
634 |
+
self.inpainter = inpainter
|
635 |
+
self.num_spans = num_spans
|
636 |
+
|
637 |
+
def forward(self, start: Tensor, keep_start: bool = False) -> Tensor:
|
638 |
+
half_length = start.shape[2] // 2
|
639 |
+
|
640 |
+
spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else []
|
641 |
+
# Inpaint second half from first half
|
642 |
+
inpaint = torch.zeros_like(start)
|
643 |
+
inpaint[:, :, :half_length] = start[:, :, half_length:]
|
644 |
+
inpaint_mask = sequential_mask(like=start, start=half_length)
|
645 |
+
|
646 |
+
for i in range(self.num_spans):
|
647 |
+
# Inpaint second half
|
648 |
+
span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask)
|
649 |
+
# Replace first half with generated second half
|
650 |
+
second_half = span[:, :, half_length:]
|
651 |
+
inpaint[:, :, :half_length] = second_half
|
652 |
+
# Save generated span
|
653 |
+
spans.append(second_half)
|
654 |
+
|
655 |
+
return torch.cat(spans, dim=2)
|
656 |
+
|
657 |
+
|
658 |
+
class XDiffusion(nn.Module):
|
659 |
+
def __init__(self, type: str, net: nn.Module, **kwargs):
|
660 |
+
super().__init__()
|
661 |
+
|
662 |
+
diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion]
|
663 |
+
aliases = [t.alias for t in diffusion_classes] # type: ignore
|
664 |
+
message = f"type='{type}' must be one of {*aliases,}"
|
665 |
+
assert type in aliases, message
|
666 |
+
self.net = net
|
667 |
+
|
668 |
+
for XDiffusion in diffusion_classes:
|
669 |
+
if XDiffusion.alias == type: # type: ignore
|
670 |
+
self.diffusion = XDiffusion(net=net, **kwargs)
|
671 |
+
|
672 |
+
def forward(self, *args, **kwargs) -> Tensor:
|
673 |
+
return self.diffusion(*args, **kwargs)
|
674 |
+
|
675 |
+
def sample(
|
676 |
+
self,
|
677 |
+
noise: Tensor,
|
678 |
+
num_steps: int,
|
679 |
+
sigma_schedule: Schedule,
|
680 |
+
sampler: Sampler,
|
681 |
+
clamp: bool,
|
682 |
+
**kwargs,
|
683 |
+
) -> Tensor:
|
684 |
+
diffusion_sampler = DiffusionSampler(
|
685 |
+
diffusion=self.diffusion,
|
686 |
+
sampler=sampler,
|
687 |
+
sigma_schedule=sigma_schedule,
|
688 |
+
num_steps=num_steps,
|
689 |
+
clamp=clamp,
|
690 |
+
)
|
691 |
+
return diffusion_sampler(noise, **kwargs)
|
Modules/diffusion/utils.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import reduce
|
2 |
+
from inspect import isfunction
|
3 |
+
from math import ceil, floor, log2, pi
|
4 |
+
from typing import Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from einops import rearrange
|
9 |
+
from torch import Generator, Tensor
|
10 |
+
from typing_extensions import TypeGuard
|
11 |
+
|
12 |
+
T = TypeVar("T")
|
13 |
+
|
14 |
+
|
15 |
+
def exists(val: Optional[T]) -> TypeGuard[T]:
|
16 |
+
return val is not None
|
17 |
+
|
18 |
+
|
19 |
+
def iff(condition: bool, value: T) -> Optional[T]:
|
20 |
+
return value if condition else None
|
21 |
+
|
22 |
+
|
23 |
+
def is_sequence(obj: T) -> TypeGuard[Union[list, tuple]]:
|
24 |
+
return isinstance(obj, list) or isinstance(obj, tuple)
|
25 |
+
|
26 |
+
|
27 |
+
def default(val: Optional[T], d: Union[Callable[..., T], T]) -> T:
|
28 |
+
if exists(val):
|
29 |
+
return val
|
30 |
+
return d() if isfunction(d) else d
|
31 |
+
|
32 |
+
|
33 |
+
def to_list(val: Union[T, Sequence[T]]) -> List[T]:
|
34 |
+
if isinstance(val, tuple):
|
35 |
+
return list(val)
|
36 |
+
if isinstance(val, list):
|
37 |
+
return val
|
38 |
+
return [val] # type: ignore
|
39 |
+
|
40 |
+
|
41 |
+
def prod(vals: Sequence[int]) -> int:
|
42 |
+
return reduce(lambda x, y: x * y, vals)
|
43 |
+
|
44 |
+
|
45 |
+
def closest_power_2(x: float) -> int:
|
46 |
+
exponent = log2(x)
|
47 |
+
distance_fn = lambda z: abs(x - 2 ** z) # noqa
|
48 |
+
exponent_closest = min((floor(exponent), ceil(exponent)), key=distance_fn)
|
49 |
+
return 2 ** int(exponent_closest)
|
50 |
+
|
51 |
+
def rand_bool(shape, proba, device = None):
|
52 |
+
if proba == 1:
|
53 |
+
return torch.ones(shape, device=device, dtype=torch.bool)
|
54 |
+
elif proba == 0:
|
55 |
+
return torch.zeros(shape, device=device, dtype=torch.bool)
|
56 |
+
else:
|
57 |
+
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
58 |
+
|
59 |
+
|
60 |
+
"""
|
61 |
+
Kwargs Utils
|
62 |
+
"""
|
63 |
+
|
64 |
+
|
65 |
+
def group_dict_by_prefix(prefix: str, d: Dict) -> Tuple[Dict, Dict]:
|
66 |
+
return_dicts: Tuple[Dict, Dict] = ({}, {})
|
67 |
+
for key in d.keys():
|
68 |
+
no_prefix = int(not key.startswith(prefix))
|
69 |
+
return_dicts[no_prefix][key] = d[key]
|
70 |
+
return return_dicts
|
71 |
+
|
72 |
+
|
73 |
+
def groupby(prefix: str, d: Dict, keep_prefix: bool = False) -> Tuple[Dict, Dict]:
|
74 |
+
kwargs_with_prefix, kwargs = group_dict_by_prefix(prefix, d)
|
75 |
+
if keep_prefix:
|
76 |
+
return kwargs_with_prefix, kwargs
|
77 |
+
kwargs_no_prefix = {k[len(prefix) :]: v for k, v in kwargs_with_prefix.items()}
|
78 |
+
return kwargs_no_prefix, kwargs
|
79 |
+
|
80 |
+
|
81 |
+
def prefix_dict(prefix: str, d: Dict) -> Dict:
|
82 |
+
return {prefix + str(k): v for k, v in d.items()}
|
Modules/discriminators.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import Conv1d, AvgPool1d, Conv2d
|
5 |
+
from torch.nn.utils import weight_norm, spectral_norm
|
6 |
+
|
7 |
+
from .utils import get_padding
|
8 |
+
|
9 |
+
LRELU_SLOPE = 0.1
|
10 |
+
|
11 |
+
def stft(x, fft_size, hop_size, win_length, window):
|
12 |
+
"""Perform STFT and convert to magnitude spectrogram.
|
13 |
+
Args:
|
14 |
+
x (Tensor): Input signal tensor (B, T).
|
15 |
+
fft_size (int): FFT size.
|
16 |
+
hop_size (int): Hop size.
|
17 |
+
win_length (int): Window length.
|
18 |
+
window (str): Window function type.
|
19 |
+
Returns:
|
20 |
+
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
21 |
+
"""
|
22 |
+
x_stft = torch.stft(x, fft_size, hop_size, win_length, window,
|
23 |
+
return_complex=True)
|
24 |
+
real = x_stft[..., 0]
|
25 |
+
imag = x_stft[..., 1]
|
26 |
+
|
27 |
+
return torch.abs(x_stft).transpose(2, 1)
|
28 |
+
|
29 |
+
class SpecDiscriminator(nn.Module):
|
30 |
+
"""docstring for Discriminator."""
|
31 |
+
|
32 |
+
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
|
33 |
+
super(SpecDiscriminator, self).__init__()
|
34 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
35 |
+
self.fft_size = fft_size
|
36 |
+
self.shift_size = shift_size
|
37 |
+
self.win_length = win_length
|
38 |
+
self.window = getattr(torch, window)(win_length)
|
39 |
+
self.discriminators = nn.ModuleList([
|
40 |
+
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
|
41 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
42 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
43 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
44 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))),
|
45 |
+
])
|
46 |
+
|
47 |
+
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
|
48 |
+
|
49 |
+
def forward(self, y):
|
50 |
+
|
51 |
+
fmap = []
|
52 |
+
y = y.squeeze(1)
|
53 |
+
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device()))
|
54 |
+
y = y.unsqueeze(1)
|
55 |
+
for i, d in enumerate(self.discriminators):
|
56 |
+
y = d(y)
|
57 |
+
y = F.leaky_relu(y, LRELU_SLOPE)
|
58 |
+
fmap.append(y)
|
59 |
+
|
60 |
+
y = self.out(y)
|
61 |
+
fmap.append(y)
|
62 |
+
|
63 |
+
return torch.flatten(y, 1, -1), fmap
|
64 |
+
|
65 |
+
class MultiResSpecDiscriminator(torch.nn.Module):
|
66 |
+
|
67 |
+
def __init__(self,
|
68 |
+
fft_sizes=[1024, 2048, 512],
|
69 |
+
hop_sizes=[120, 240, 50],
|
70 |
+
win_lengths=[600, 1200, 240],
|
71 |
+
window="hann_window"):
|
72 |
+
|
73 |
+
super(MultiResSpecDiscriminator, self).__init__()
|
74 |
+
self.discriminators = nn.ModuleList([
|
75 |
+
SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
|
76 |
+
SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
|
77 |
+
SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)
|
78 |
+
])
|
79 |
+
|
80 |
+
def forward(self, y, y_hat):
|
81 |
+
y_d_rs = []
|
82 |
+
y_d_gs = []
|
83 |
+
fmap_rs = []
|
84 |
+
fmap_gs = []
|
85 |
+
for i, d in enumerate(self.discriminators):
|
86 |
+
y_d_r, fmap_r = d(y)
|
87 |
+
y_d_g, fmap_g = d(y_hat)
|
88 |
+
y_d_rs.append(y_d_r)
|
89 |
+
fmap_rs.append(fmap_r)
|
90 |
+
y_d_gs.append(y_d_g)
|
91 |
+
fmap_gs.append(fmap_g)
|
92 |
+
|
93 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
94 |
+
|
95 |
+
|
96 |
+
class DiscriminatorP(torch.nn.Module):
|
97 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
98 |
+
super(DiscriminatorP, self).__init__()
|
99 |
+
self.period = period
|
100 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
101 |
+
self.convs = nn.ModuleList([
|
102 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
103 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
104 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
105 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
106 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
107 |
+
])
|
108 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
fmap = []
|
112 |
+
|
113 |
+
# 1d to 2d
|
114 |
+
b, c, t = x.shape
|
115 |
+
if t % self.period != 0: # pad first
|
116 |
+
n_pad = self.period - (t % self.period)
|
117 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
118 |
+
t = t + n_pad
|
119 |
+
x = x.view(b, c, t // self.period, self.period)
|
120 |
+
|
121 |
+
for l in self.convs:
|
122 |
+
x = l(x)
|
123 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
124 |
+
fmap.append(x)
|
125 |
+
x = self.conv_post(x)
|
126 |
+
fmap.append(x)
|
127 |
+
x = torch.flatten(x, 1, -1)
|
128 |
+
|
129 |
+
return x, fmap
|
130 |
+
|
131 |
+
|
132 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
133 |
+
def __init__(self):
|
134 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
135 |
+
self.discriminators = nn.ModuleList([
|
136 |
+
DiscriminatorP(2),
|
137 |
+
DiscriminatorP(3),
|
138 |
+
DiscriminatorP(5),
|
139 |
+
DiscriminatorP(7),
|
140 |
+
DiscriminatorP(11),
|
141 |
+
])
|
142 |
+
|
143 |
+
def forward(self, y, y_hat):
|
144 |
+
y_d_rs = []
|
145 |
+
y_d_gs = []
|
146 |
+
fmap_rs = []
|
147 |
+
fmap_gs = []
|
148 |
+
for i, d in enumerate(self.discriminators):
|
149 |
+
y_d_r, fmap_r = d(y)
|
150 |
+
y_d_g, fmap_g = d(y_hat)
|
151 |
+
y_d_rs.append(y_d_r)
|
152 |
+
fmap_rs.append(fmap_r)
|
153 |
+
y_d_gs.append(y_d_g)
|
154 |
+
fmap_gs.append(fmap_g)
|
155 |
+
|
156 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
157 |
+
|
158 |
+
class WavLMDiscriminator(nn.Module):
|
159 |
+
"""docstring for Discriminator."""
|
160 |
+
|
161 |
+
def __init__(self, slm_hidden=768,
|
162 |
+
slm_layers=13,
|
163 |
+
initial_channel=64,
|
164 |
+
use_spectral_norm=False):
|
165 |
+
super(WavLMDiscriminator, self).__init__()
|
166 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
167 |
+
self.pre = norm_f(Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0))
|
168 |
+
|
169 |
+
self.convs = nn.ModuleList([
|
170 |
+
norm_f(nn.Conv1d(initial_channel, initial_channel * 2, kernel_size=5, padding=2)),
|
171 |
+
norm_f(nn.Conv1d(initial_channel * 2, initial_channel * 4, kernel_size=5, padding=2)),
|
172 |
+
norm_f(nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2)),
|
173 |
+
])
|
174 |
+
|
175 |
+
self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1))
|
176 |
+
|
177 |
+
def forward(self, x):
|
178 |
+
x = self.pre(x)
|
179 |
+
|
180 |
+
fmap = []
|
181 |
+
for l in self.convs:
|
182 |
+
x = l(x)
|
183 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
184 |
+
fmap.append(x)
|
185 |
+
x = self.conv_post(x)
|
186 |
+
x = torch.flatten(x, 1, -1)
|
187 |
+
|
188 |
+
return x
|
Modules/hifigan.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
5 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
6 |
+
from .utils import init_weights, get_padding
|
7 |
+
|
8 |
+
import math
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
LRELU_SLOPE = 0.1
|
13 |
+
|
14 |
+
class AdaIN1d(nn.Module):
|
15 |
+
def __init__(self, style_dim, num_features):
|
16 |
+
super().__init__()
|
17 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
18 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
19 |
+
|
20 |
+
def forward(self, x, s):
|
21 |
+
h = self.fc(s)
|
22 |
+
h = h.view(h.size(0), h.size(1), 1)
|
23 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
24 |
+
return (1 + gamma) * self.norm(x) + beta
|
25 |
+
|
26 |
+
class AdaINResBlock1(torch.nn.Module):
|
27 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
28 |
+
super(AdaINResBlock1, self).__init__()
|
29 |
+
self.convs1 = nn.ModuleList([
|
30 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
31 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
32 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
33 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
34 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
35 |
+
padding=get_padding(kernel_size, dilation[2])))
|
36 |
+
])
|
37 |
+
self.convs1.apply(init_weights)
|
38 |
+
|
39 |
+
self.convs2 = nn.ModuleList([
|
40 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
41 |
+
padding=get_padding(kernel_size, 1))),
|
42 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
43 |
+
padding=get_padding(kernel_size, 1))),
|
44 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
45 |
+
padding=get_padding(kernel_size, 1)))
|
46 |
+
])
|
47 |
+
self.convs2.apply(init_weights)
|
48 |
+
|
49 |
+
self.adain1 = nn.ModuleList([
|
50 |
+
AdaIN1d(style_dim, channels),
|
51 |
+
AdaIN1d(style_dim, channels),
|
52 |
+
AdaIN1d(style_dim, channels),
|
53 |
+
])
|
54 |
+
|
55 |
+
self.adain2 = nn.ModuleList([
|
56 |
+
AdaIN1d(style_dim, channels),
|
57 |
+
AdaIN1d(style_dim, channels),
|
58 |
+
AdaIN1d(style_dim, channels),
|
59 |
+
])
|
60 |
+
|
61 |
+
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
62 |
+
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
63 |
+
|
64 |
+
|
65 |
+
def forward(self, x, s):
|
66 |
+
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
67 |
+
xt = n1(x, s)
|
68 |
+
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
69 |
+
xt = c1(xt)
|
70 |
+
xt = n2(xt, s)
|
71 |
+
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
72 |
+
xt = c2(xt)
|
73 |
+
x = xt + x
|
74 |
+
return x
|
75 |
+
|
76 |
+
def remove_weight_norm(self):
|
77 |
+
for l in self.convs1:
|
78 |
+
remove_weight_norm(l)
|
79 |
+
for l in self.convs2:
|
80 |
+
remove_weight_norm(l)
|
81 |
+
|
82 |
+
class SineGen(torch.nn.Module):
|
83 |
+
""" Definition of sine generator
|
84 |
+
SineGen(samp_rate, harmonic_num = 0,
|
85 |
+
sine_amp = 0.1, noise_std = 0.003,
|
86 |
+
voiced_threshold = 0,
|
87 |
+
flag_for_pulse=False)
|
88 |
+
samp_rate: sampling rate in Hz
|
89 |
+
harmonic_num: number of harmonic overtones (default 0)
|
90 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
91 |
+
noise_std: std of Gaussian noise (default 0.003)
|
92 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
93 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
94 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
95 |
+
segment is always sin(np.pi) or cos(0)
|
96 |
+
"""
|
97 |
+
|
98 |
+
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
99 |
+
sine_amp=0.1, noise_std=0.003,
|
100 |
+
voiced_threshold=0,
|
101 |
+
flag_for_pulse=False):
|
102 |
+
super(SineGen, self).__init__()
|
103 |
+
self.sine_amp = sine_amp
|
104 |
+
self.noise_std = noise_std
|
105 |
+
self.harmonic_num = harmonic_num
|
106 |
+
self.dim = self.harmonic_num + 1
|
107 |
+
self.sampling_rate = samp_rate
|
108 |
+
self.voiced_threshold = voiced_threshold
|
109 |
+
self.flag_for_pulse = flag_for_pulse
|
110 |
+
self.upsample_scale = upsample_scale
|
111 |
+
|
112 |
+
def _f02uv(self, f0):
|
113 |
+
# generate uv signal
|
114 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
115 |
+
return uv
|
116 |
+
|
117 |
+
def _f02sine(self, f0_values):
|
118 |
+
""" f0_values: (batchsize, length, dim)
|
119 |
+
where dim indicates fundamental tone and overtones
|
120 |
+
"""
|
121 |
+
# convert to F0 in rad. The interger part n can be ignored
|
122 |
+
# because 2 * np.pi * n doesn't affect phase
|
123 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
124 |
+
|
125 |
+
# initial phase noise (no noise for fundamental component)
|
126 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
127 |
+
device=f0_values.device)
|
128 |
+
rand_ini[:, 0] = 0
|
129 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
130 |
+
|
131 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
132 |
+
if not self.flag_for_pulse:
|
133 |
+
# # for normal case
|
134 |
+
|
135 |
+
# # To prevent torch.cumsum numerical overflow,
|
136 |
+
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
137 |
+
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
138 |
+
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
139 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
140 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
141 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
142 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
143 |
+
|
144 |
+
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
145 |
+
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
146 |
+
scale_factor=1/self.upsample_scale,
|
147 |
+
mode="linear").transpose(1, 2)
|
148 |
+
|
149 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
150 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
151 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
152 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
153 |
+
|
154 |
+
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
155 |
+
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
156 |
+
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
157 |
+
sines = torch.sin(phase)
|
158 |
+
|
159 |
+
else:
|
160 |
+
# If necessary, make sure that the first time step of every
|
161 |
+
# voiced segments is sin(pi) or cos(0)
|
162 |
+
# This is used for pulse-train generation
|
163 |
+
|
164 |
+
# identify the last time step in unvoiced segments
|
165 |
+
uv = self._f02uv(f0_values)
|
166 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
167 |
+
uv_1[:, -1, :] = 1
|
168 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
169 |
+
|
170 |
+
# get the instantanouse phase
|
171 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
172 |
+
# different batch needs to be processed differently
|
173 |
+
for idx in range(f0_values.shape[0]):
|
174 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
175 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
176 |
+
# stores the accumulation of i.phase within
|
177 |
+
# each voiced segments
|
178 |
+
tmp_cumsum[idx, :, :] = 0
|
179 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
180 |
+
|
181 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
182 |
+
# within the previous voiced segment.
|
183 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
184 |
+
|
185 |
+
# get the sines
|
186 |
+
sines = torch.cos(i_phase * 2 * np.pi)
|
187 |
+
return sines
|
188 |
+
|
189 |
+
def forward(self, f0):
|
190 |
+
""" sine_tensor, uv = forward(f0)
|
191 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
192 |
+
f0 for unvoiced steps should be 0
|
193 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
194 |
+
output uv: tensor(batchsize=1, length, 1)
|
195 |
+
"""
|
196 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
197 |
+
device=f0.device)
|
198 |
+
# fundamental component
|
199 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
200 |
+
|
201 |
+
# generate sine waveforms
|
202 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
203 |
+
|
204 |
+
# generate uv signal
|
205 |
+
# uv = torch.ones(f0.shape)
|
206 |
+
# uv = uv * (f0 > self.voiced_threshold)
|
207 |
+
uv = self._f02uv(f0)
|
208 |
+
|
209 |
+
# noise: for unvoiced should be similar to sine_amp
|
210 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
211 |
+
# . for voiced regions is self.noise_std
|
212 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
213 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
214 |
+
|
215 |
+
# first: set the unvoiced part to 0 by uv
|
216 |
+
# then: additive noise
|
217 |
+
sine_waves = sine_waves * uv + noise
|
218 |
+
return sine_waves, uv, noise
|
219 |
+
|
220 |
+
|
221 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
222 |
+
""" SourceModule for hn-nsf
|
223 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
224 |
+
add_noise_std=0.003, voiced_threshod=0)
|
225 |
+
sampling_rate: sampling_rate in Hz
|
226 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
227 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
228 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
229 |
+
note that amplitude of noise in unvoiced is decided
|
230 |
+
by sine_amp
|
231 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
232 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
233 |
+
F0_sampled (batchsize, length, 1)
|
234 |
+
Sine_source (batchsize, length, 1)
|
235 |
+
noise_source (batchsize, length 1)
|
236 |
+
uv (batchsize, length, 1)
|
237 |
+
"""
|
238 |
+
|
239 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
240 |
+
add_noise_std=0.003, voiced_threshod=0):
|
241 |
+
super(SourceModuleHnNSF, self).__init__()
|
242 |
+
|
243 |
+
self.sine_amp = sine_amp
|
244 |
+
self.noise_std = add_noise_std
|
245 |
+
|
246 |
+
# to produce sine waveforms
|
247 |
+
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
248 |
+
sine_amp, add_noise_std, voiced_threshod)
|
249 |
+
|
250 |
+
# to merge source harmonics into a single excitation
|
251 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
252 |
+
self.l_tanh = torch.nn.Tanh()
|
253 |
+
|
254 |
+
def forward(self, x):
|
255 |
+
"""
|
256 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
257 |
+
F0_sampled (batchsize, length, 1)
|
258 |
+
Sine_source (batchsize, length, 1)
|
259 |
+
noise_source (batchsize, length 1)
|
260 |
+
"""
|
261 |
+
# source for harmonic branch
|
262 |
+
with torch.no_grad():
|
263 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
264 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
265 |
+
|
266 |
+
# source for noise branch, in the same shape as uv
|
267 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
268 |
+
return sine_merge, noise, uv
|
269 |
+
def padDiff(x):
|
270 |
+
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
271 |
+
|
272 |
+
class Generator(torch.nn.Module):
|
273 |
+
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes):
|
274 |
+
super(Generator, self).__init__()
|
275 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
276 |
+
self.num_upsamples = len(upsample_rates)
|
277 |
+
resblock = AdaINResBlock1
|
278 |
+
|
279 |
+
self.m_source = SourceModuleHnNSF(
|
280 |
+
sampling_rate=24000,
|
281 |
+
upsample_scale=np.prod(upsample_rates),
|
282 |
+
harmonic_num=8, voiced_threshod=10)
|
283 |
+
|
284 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
285 |
+
self.noise_convs = nn.ModuleList()
|
286 |
+
self.ups = nn.ModuleList()
|
287 |
+
self.noise_res = nn.ModuleList()
|
288 |
+
|
289 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
290 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
291 |
+
|
292 |
+
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
|
293 |
+
upsample_initial_channel//(2**(i+1)),
|
294 |
+
k, u, padding=(u//2 + u%2), output_padding=u%2)))
|
295 |
+
|
296 |
+
if i + 1 < len(upsample_rates): #
|
297 |
+
stride_f0 = np.prod(upsample_rates[i + 1:])
|
298 |
+
self.noise_convs.append(Conv1d(
|
299 |
+
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
300 |
+
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
301 |
+
else:
|
302 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
303 |
+
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
304 |
+
|
305 |
+
self.resblocks = nn.ModuleList()
|
306 |
+
|
307 |
+
self.alphas = nn.ParameterList()
|
308 |
+
self.alphas.append(nn.Parameter(torch.ones(1, upsample_initial_channel, 1)))
|
309 |
+
|
310 |
+
for i in range(len(self.ups)):
|
311 |
+
ch = upsample_initial_channel//(2**(i+1))
|
312 |
+
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
|
313 |
+
|
314 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
315 |
+
self.resblocks.append(resblock(ch, k, d, style_dim))
|
316 |
+
|
317 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
318 |
+
self.ups.apply(init_weights)
|
319 |
+
self.conv_post.apply(init_weights)
|
320 |
+
|
321 |
+
def forward(self, x, s, f0):
|
322 |
+
|
323 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
324 |
+
|
325 |
+
har_source, noi_source, uv = self.m_source(f0)
|
326 |
+
har_source = har_source.transpose(1, 2)
|
327 |
+
|
328 |
+
for i in range(self.num_upsamples):
|
329 |
+
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
|
330 |
+
x_source = self.noise_convs[i](har_source)
|
331 |
+
x_source = self.noise_res[i](x_source, s)
|
332 |
+
|
333 |
+
x = self.ups[i](x)
|
334 |
+
x = x + x_source
|
335 |
+
|
336 |
+
xs = None
|
337 |
+
for j in range(self.num_kernels):
|
338 |
+
if xs is None:
|
339 |
+
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
340 |
+
else:
|
341 |
+
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
342 |
+
x = xs / self.num_kernels
|
343 |
+
x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2)
|
344 |
+
x = self.conv_post(x)
|
345 |
+
x = torch.tanh(x)
|
346 |
+
|
347 |
+
return x
|
348 |
+
|
349 |
+
def remove_weight_norm(self):
|
350 |
+
print('Removing weight norm...')
|
351 |
+
for l in self.ups:
|
352 |
+
remove_weight_norm(l)
|
353 |
+
for l in self.resblocks:
|
354 |
+
l.remove_weight_norm()
|
355 |
+
remove_weight_norm(self.conv_pre)
|
356 |
+
remove_weight_norm(self.conv_post)
|
357 |
+
|
358 |
+
|
359 |
+
class AdainResBlk1d(nn.Module):
|
360 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
361 |
+
upsample='none', dropout_p=0.0):
|
362 |
+
super().__init__()
|
363 |
+
self.actv = actv
|
364 |
+
self.upsample_type = upsample
|
365 |
+
self.upsample = UpSample1d(upsample)
|
366 |
+
self.learned_sc = dim_in != dim_out
|
367 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
368 |
+
self.dropout = nn.Dropout(dropout_p)
|
369 |
+
|
370 |
+
if upsample == 'none':
|
371 |
+
self.pool = nn.Identity()
|
372 |
+
else:
|
373 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
374 |
+
|
375 |
+
|
376 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
377 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
378 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
379 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
380 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
381 |
+
if self.learned_sc:
|
382 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
383 |
+
|
384 |
+
def _shortcut(self, x):
|
385 |
+
x = self.upsample(x)
|
386 |
+
if self.learned_sc:
|
387 |
+
x = self.conv1x1(x)
|
388 |
+
return x
|
389 |
+
|
390 |
+
def _residual(self, x, s):
|
391 |
+
x = self.norm1(x, s)
|
392 |
+
x = self.actv(x)
|
393 |
+
x = self.pool(x)
|
394 |
+
x = self.conv1(self.dropout(x))
|
395 |
+
x = self.norm2(x, s)
|
396 |
+
x = self.actv(x)
|
397 |
+
x = self.conv2(self.dropout(x))
|
398 |
+
return x
|
399 |
+
|
400 |
+
def forward(self, x, s):
|
401 |
+
out = self._residual(x, s)
|
402 |
+
out = (out + self._shortcut(x)) / math.sqrt(2)
|
403 |
+
return out
|
404 |
+
|
405 |
+
class UpSample1d(nn.Module):
|
406 |
+
def __init__(self, layer_type):
|
407 |
+
super().__init__()
|
408 |
+
self.layer_type = layer_type
|
409 |
+
|
410 |
+
def forward(self, x):
|
411 |
+
if self.layer_type == 'none':
|
412 |
+
return x
|
413 |
+
else:
|
414 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
415 |
+
|
416 |
+
class Decoder(nn.Module):
|
417 |
+
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
418 |
+
resblock_kernel_sizes = [3,7,11],
|
419 |
+
upsample_rates = [10,5,3,2],
|
420 |
+
upsample_initial_channel=512,
|
421 |
+
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
422 |
+
upsample_kernel_sizes=[20,10,6,4]):
|
423 |
+
super().__init__()
|
424 |
+
|
425 |
+
self.decode = nn.ModuleList()
|
426 |
+
|
427 |
+
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
428 |
+
|
429 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
430 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
431 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
432 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
433 |
+
|
434 |
+
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
435 |
+
|
436 |
+
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
437 |
+
|
438 |
+
self.asr_res = nn.Sequential(
|
439 |
+
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
440 |
+
)
|
441 |
+
|
442 |
+
|
443 |
+
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
|
444 |
+
|
445 |
+
|
446 |
+
def forward(self, asr, F0_curve, N, s):
|
447 |
+
if self.training:
|
448 |
+
downlist = [0, 3, 7]
|
449 |
+
F0_down = downlist[random.randint(0, 2)]
|
450 |
+
downlist = [0, 3, 7, 15]
|
451 |
+
N_down = downlist[random.randint(0, 3)]
|
452 |
+
if F0_down:
|
453 |
+
F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
|
454 |
+
if N_down:
|
455 |
+
N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
|
456 |
+
|
457 |
+
|
458 |
+
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
459 |
+
N = self.N_conv(N.unsqueeze(1))
|
460 |
+
|
461 |
+
x = torch.cat([asr, F0, N], axis=1)
|
462 |
+
x = self.encode(x, s)
|
463 |
+
|
464 |
+
asr_res = self.asr_res(asr)
|
465 |
+
|
466 |
+
res = True
|
467 |
+
for block in self.decode:
|
468 |
+
if res:
|
469 |
+
x = torch.cat([x, asr_res, F0, N], axis=1)
|
470 |
+
x = block(x, s)
|
471 |
+
if block.upsample_type != "none":
|
472 |
+
res = False
|
473 |
+
|
474 |
+
x = self.generator(x, s, F0_curve)
|
475 |
+
return x
|
476 |
+
|
477 |
+
|
Modules/istftnet.py
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
5 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
6 |
+
from .utils import init_weights, get_padding
|
7 |
+
|
8 |
+
import math
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
+
from scipy.signal import get_window
|
12 |
+
|
13 |
+
LRELU_SLOPE = 0.1
|
14 |
+
|
15 |
+
class AdaIN1d(nn.Module):
|
16 |
+
def __init__(self, style_dim, num_features):
|
17 |
+
super().__init__()
|
18 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
19 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
20 |
+
|
21 |
+
def forward(self, x, s):
|
22 |
+
h = self.fc(s)
|
23 |
+
h = h.view(h.size(0), h.size(1), 1)
|
24 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
25 |
+
return (1 + gamma) * self.norm(x) + beta
|
26 |
+
|
27 |
+
class AdaINResBlock1(torch.nn.Module):
|
28 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
29 |
+
super(AdaINResBlock1, self).__init__()
|
30 |
+
self.convs1 = nn.ModuleList([
|
31 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
32 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
33 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
34 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
35 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
36 |
+
padding=get_padding(kernel_size, dilation[2])))
|
37 |
+
])
|
38 |
+
self.convs1.apply(init_weights)
|
39 |
+
|
40 |
+
self.convs2 = nn.ModuleList([
|
41 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
42 |
+
padding=get_padding(kernel_size, 1))),
|
43 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
44 |
+
padding=get_padding(kernel_size, 1))),
|
45 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
46 |
+
padding=get_padding(kernel_size, 1)))
|
47 |
+
])
|
48 |
+
self.convs2.apply(init_weights)
|
49 |
+
|
50 |
+
self.adain1 = nn.ModuleList([
|
51 |
+
AdaIN1d(style_dim, channels),
|
52 |
+
AdaIN1d(style_dim, channels),
|
53 |
+
AdaIN1d(style_dim, channels),
|
54 |
+
])
|
55 |
+
|
56 |
+
self.adain2 = nn.ModuleList([
|
57 |
+
AdaIN1d(style_dim, channels),
|
58 |
+
AdaIN1d(style_dim, channels),
|
59 |
+
AdaIN1d(style_dim, channels),
|
60 |
+
])
|
61 |
+
|
62 |
+
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
63 |
+
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
64 |
+
|
65 |
+
|
66 |
+
def forward(self, x, s):
|
67 |
+
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
68 |
+
xt = n1(x, s)
|
69 |
+
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
70 |
+
xt = c1(xt)
|
71 |
+
xt = n2(xt, s)
|
72 |
+
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
73 |
+
xt = c2(xt)
|
74 |
+
x = xt + x
|
75 |
+
return x
|
76 |
+
|
77 |
+
def remove_weight_norm(self):
|
78 |
+
for l in self.convs1:
|
79 |
+
remove_weight_norm(l)
|
80 |
+
for l in self.convs2:
|
81 |
+
remove_weight_norm(l)
|
82 |
+
|
83 |
+
class TorchSTFT(torch.nn.Module):
|
84 |
+
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
|
85 |
+
super().__init__()
|
86 |
+
self.filter_length = filter_length
|
87 |
+
self.hop_length = hop_length
|
88 |
+
self.win_length = win_length
|
89 |
+
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
|
90 |
+
|
91 |
+
def transform(self, input_data):
|
92 |
+
forward_transform = torch.stft(
|
93 |
+
input_data,
|
94 |
+
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
|
95 |
+
return_complex=True)
|
96 |
+
|
97 |
+
return torch.abs(forward_transform), torch.angle(forward_transform)
|
98 |
+
|
99 |
+
def inverse(self, magnitude, phase):
|
100 |
+
inverse_transform = torch.istft(
|
101 |
+
magnitude * torch.exp(phase * 1j),
|
102 |
+
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
|
103 |
+
|
104 |
+
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
105 |
+
|
106 |
+
def forward(self, input_data):
|
107 |
+
self.magnitude, self.phase = self.transform(input_data)
|
108 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
109 |
+
return reconstruction
|
110 |
+
|
111 |
+
class SineGen(torch.nn.Module):
|
112 |
+
""" Definition of sine generator
|
113 |
+
SineGen(samp_rate, harmonic_num = 0,
|
114 |
+
sine_amp = 0.1, noise_std = 0.003,
|
115 |
+
voiced_threshold = 0,
|
116 |
+
flag_for_pulse=False)
|
117 |
+
samp_rate: sampling rate in Hz
|
118 |
+
harmonic_num: number of harmonic overtones (default 0)
|
119 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
120 |
+
noise_std: std of Gaussian noise (default 0.003)
|
121 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
122 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
123 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
124 |
+
segment is always sin(np.pi) or cos(0)
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
128 |
+
sine_amp=0.1, noise_std=0.003,
|
129 |
+
voiced_threshold=0,
|
130 |
+
flag_for_pulse=False):
|
131 |
+
super(SineGen, self).__init__()
|
132 |
+
self.sine_amp = sine_amp
|
133 |
+
self.noise_std = noise_std
|
134 |
+
self.harmonic_num = harmonic_num
|
135 |
+
self.dim = self.harmonic_num + 1
|
136 |
+
self.sampling_rate = samp_rate
|
137 |
+
self.voiced_threshold = voiced_threshold
|
138 |
+
self.flag_for_pulse = flag_for_pulse
|
139 |
+
self.upsample_scale = upsample_scale
|
140 |
+
|
141 |
+
def _f02uv(self, f0):
|
142 |
+
# generate uv signal
|
143 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
144 |
+
return uv
|
145 |
+
|
146 |
+
def _f02sine(self, f0_values):
|
147 |
+
""" f0_values: (batchsize, length, dim)
|
148 |
+
where dim indicates fundamental tone and overtones
|
149 |
+
"""
|
150 |
+
# convert to F0 in rad. The interger part n can be ignored
|
151 |
+
# because 2 * np.pi * n doesn't affect phase
|
152 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
153 |
+
|
154 |
+
# initial phase noise (no noise for fundamental component)
|
155 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
156 |
+
device=f0_values.device)
|
157 |
+
rand_ini[:, 0] = 0
|
158 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
159 |
+
|
160 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
161 |
+
if not self.flag_for_pulse:
|
162 |
+
# # for normal case
|
163 |
+
|
164 |
+
# # To prevent torch.cumsum numerical overflow,
|
165 |
+
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
166 |
+
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
167 |
+
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
168 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
169 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
170 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
171 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
172 |
+
|
173 |
+
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
174 |
+
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
175 |
+
scale_factor=1/self.upsample_scale,
|
176 |
+
mode="linear").transpose(1, 2)
|
177 |
+
|
178 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
179 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
180 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
181 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
182 |
+
|
183 |
+
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
184 |
+
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
185 |
+
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
186 |
+
sines = torch.sin(phase)
|
187 |
+
|
188 |
+
else:
|
189 |
+
# If necessary, make sure that the first time step of every
|
190 |
+
# voiced segments is sin(pi) or cos(0)
|
191 |
+
# This is used for pulse-train generation
|
192 |
+
|
193 |
+
# identify the last time step in unvoiced segments
|
194 |
+
uv = self._f02uv(f0_values)
|
195 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
196 |
+
uv_1[:, -1, :] = 1
|
197 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
198 |
+
|
199 |
+
# get the instantanouse phase
|
200 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
201 |
+
# different batch needs to be processed differently
|
202 |
+
for idx in range(f0_values.shape[0]):
|
203 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
204 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
205 |
+
# stores the accumulation of i.phase within
|
206 |
+
# each voiced segments
|
207 |
+
tmp_cumsum[idx, :, :] = 0
|
208 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
209 |
+
|
210 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
211 |
+
# within the previous voiced segment.
|
212 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
213 |
+
|
214 |
+
# get the sines
|
215 |
+
sines = torch.cos(i_phase * 2 * np.pi)
|
216 |
+
return sines
|
217 |
+
|
218 |
+
def forward(self, f0):
|
219 |
+
""" sine_tensor, uv = forward(f0)
|
220 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
221 |
+
f0 for unvoiced steps should be 0
|
222 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
223 |
+
output uv: tensor(batchsize=1, length, 1)
|
224 |
+
"""
|
225 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
226 |
+
device=f0.device)
|
227 |
+
# fundamental component
|
228 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
229 |
+
|
230 |
+
# generate sine waveforms
|
231 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
232 |
+
|
233 |
+
# generate uv signal
|
234 |
+
# uv = torch.ones(f0.shape)
|
235 |
+
# uv = uv * (f0 > self.voiced_threshold)
|
236 |
+
uv = self._f02uv(f0)
|
237 |
+
|
238 |
+
# noise: for unvoiced should be similar to sine_amp
|
239 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
240 |
+
# . for voiced regions is self.noise_std
|
241 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
242 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
243 |
+
|
244 |
+
# first: set the unvoiced part to 0 by uv
|
245 |
+
# then: additive noise
|
246 |
+
sine_waves = sine_waves * uv + noise
|
247 |
+
return sine_waves, uv, noise
|
248 |
+
|
249 |
+
|
250 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
251 |
+
""" SourceModule for hn-nsf
|
252 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
253 |
+
add_noise_std=0.003, voiced_threshod=0)
|
254 |
+
sampling_rate: sampling_rate in Hz
|
255 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
256 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
257 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
258 |
+
note that amplitude of noise in unvoiced is decided
|
259 |
+
by sine_amp
|
260 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
261 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
262 |
+
F0_sampled (batchsize, length, 1)
|
263 |
+
Sine_source (batchsize, length, 1)
|
264 |
+
noise_source (batchsize, length 1)
|
265 |
+
uv (batchsize, length, 1)
|
266 |
+
"""
|
267 |
+
|
268 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
269 |
+
add_noise_std=0.003, voiced_threshod=0):
|
270 |
+
super(SourceModuleHnNSF, self).__init__()
|
271 |
+
|
272 |
+
self.sine_amp = sine_amp
|
273 |
+
self.noise_std = add_noise_std
|
274 |
+
|
275 |
+
# to produce sine waveforms
|
276 |
+
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
277 |
+
sine_amp, add_noise_std, voiced_threshod)
|
278 |
+
|
279 |
+
# to merge source harmonics into a single excitation
|
280 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
281 |
+
self.l_tanh = torch.nn.Tanh()
|
282 |
+
|
283 |
+
def forward(self, x):
|
284 |
+
"""
|
285 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
286 |
+
F0_sampled (batchsize, length, 1)
|
287 |
+
Sine_source (batchsize, length, 1)
|
288 |
+
noise_source (batchsize, length 1)
|
289 |
+
"""
|
290 |
+
# source for harmonic branch
|
291 |
+
with torch.no_grad():
|
292 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
293 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
294 |
+
|
295 |
+
# source for noise branch, in the same shape as uv
|
296 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
297 |
+
return sine_merge, noise, uv
|
298 |
+
def padDiff(x):
|
299 |
+
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
300 |
+
|
301 |
+
|
302 |
+
class Generator(torch.nn.Module):
|
303 |
+
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
|
304 |
+
super(Generator, self).__init__()
|
305 |
+
|
306 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
307 |
+
self.num_upsamples = len(upsample_rates)
|
308 |
+
resblock = AdaINResBlock1
|
309 |
+
|
310 |
+
self.m_source = SourceModuleHnNSF(
|
311 |
+
sampling_rate=24000,
|
312 |
+
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
|
313 |
+
harmonic_num=8, voiced_threshod=10)
|
314 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
|
315 |
+
self.noise_convs = nn.ModuleList()
|
316 |
+
self.noise_res = nn.ModuleList()
|
317 |
+
|
318 |
+
self.ups = nn.ModuleList()
|
319 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
320 |
+
self.ups.append(weight_norm(
|
321 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
322 |
+
k, u, padding=(k-u)//2)))
|
323 |
+
|
324 |
+
self.resblocks = nn.ModuleList()
|
325 |
+
for i in range(len(self.ups)):
|
326 |
+
ch = upsample_initial_channel//(2**(i+1))
|
327 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
|
328 |
+
self.resblocks.append(resblock(ch, k, d, style_dim))
|
329 |
+
|
330 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
331 |
+
|
332 |
+
if i + 1 < len(upsample_rates): #
|
333 |
+
stride_f0 = np.prod(upsample_rates[i + 1:])
|
334 |
+
self.noise_convs.append(Conv1d(
|
335 |
+
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
336 |
+
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
337 |
+
else:
|
338 |
+
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
|
339 |
+
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
340 |
+
|
341 |
+
|
342 |
+
self.post_n_fft = gen_istft_n_fft
|
343 |
+
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
344 |
+
self.ups.apply(init_weights)
|
345 |
+
self.conv_post.apply(init_weights)
|
346 |
+
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
347 |
+
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
|
348 |
+
|
349 |
+
|
350 |
+
def forward(self, x, s, f0):
|
351 |
+
with torch.no_grad():
|
352 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
353 |
+
|
354 |
+
har_source, noi_source, uv = self.m_source(f0)
|
355 |
+
har_source = har_source.transpose(1, 2).squeeze(1)
|
356 |
+
har_spec, har_phase = self.stft.transform(har_source)
|
357 |
+
har = torch.cat([har_spec, har_phase], dim=1)
|
358 |
+
|
359 |
+
for i in range(self.num_upsamples):
|
360 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
361 |
+
x_source = self.noise_convs[i](har)
|
362 |
+
x_source = self.noise_res[i](x_source, s)
|
363 |
+
|
364 |
+
x = self.ups[i](x)
|
365 |
+
if i == self.num_upsamples - 1:
|
366 |
+
x = self.reflection_pad(x)
|
367 |
+
|
368 |
+
x = x + x_source
|
369 |
+
xs = None
|
370 |
+
for j in range(self.num_kernels):
|
371 |
+
if xs is None:
|
372 |
+
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
373 |
+
else:
|
374 |
+
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
375 |
+
x = xs / self.num_kernels
|
376 |
+
x = F.leaky_relu(x)
|
377 |
+
x = self.conv_post(x)
|
378 |
+
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
379 |
+
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
380 |
+
return self.stft.inverse(spec, phase)
|
381 |
+
|
382 |
+
def fw_phase(self, x, s):
|
383 |
+
for i in range(self.num_upsamples):
|
384 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
385 |
+
x = self.ups[i](x)
|
386 |
+
xs = None
|
387 |
+
for j in range(self.num_kernels):
|
388 |
+
if xs is None:
|
389 |
+
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
390 |
+
else:
|
391 |
+
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
392 |
+
x = xs / self.num_kernels
|
393 |
+
x = F.leaky_relu(x)
|
394 |
+
x = self.reflection_pad(x)
|
395 |
+
x = self.conv_post(x)
|
396 |
+
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
397 |
+
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
398 |
+
return spec, phase
|
399 |
+
|
400 |
+
def remove_weight_norm(self):
|
401 |
+
print('Removing weight norm...')
|
402 |
+
for l in self.ups:
|
403 |
+
remove_weight_norm(l)
|
404 |
+
for l in self.resblocks:
|
405 |
+
l.remove_weight_norm()
|
406 |
+
remove_weight_norm(self.conv_pre)
|
407 |
+
remove_weight_norm(self.conv_post)
|
408 |
+
|
409 |
+
|
410 |
+
class AdainResBlk1d(nn.Module):
|
411 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
412 |
+
upsample='none', dropout_p=0.0):
|
413 |
+
super().__init__()
|
414 |
+
self.actv = actv
|
415 |
+
self.upsample_type = upsample
|
416 |
+
self.upsample = UpSample1d(upsample)
|
417 |
+
self.learned_sc = dim_in != dim_out
|
418 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
419 |
+
self.dropout = nn.Dropout(dropout_p)
|
420 |
+
|
421 |
+
if upsample == 'none':
|
422 |
+
self.pool = nn.Identity()
|
423 |
+
else:
|
424 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
425 |
+
|
426 |
+
|
427 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
428 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
429 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
430 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
431 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
432 |
+
if self.learned_sc:
|
433 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
434 |
+
|
435 |
+
def _shortcut(self, x):
|
436 |
+
x = self.upsample(x)
|
437 |
+
if self.learned_sc:
|
438 |
+
x = self.conv1x1(x)
|
439 |
+
return x
|
440 |
+
|
441 |
+
def _residual(self, x, s):
|
442 |
+
x = self.norm1(x, s)
|
443 |
+
x = self.actv(x)
|
444 |
+
x = self.pool(x)
|
445 |
+
x = self.conv1(self.dropout(x))
|
446 |
+
x = self.norm2(x, s)
|
447 |
+
x = self.actv(x)
|
448 |
+
x = self.conv2(self.dropout(x))
|
449 |
+
return x
|
450 |
+
|
451 |
+
def forward(self, x, s):
|
452 |
+
out = self._residual(x, s)
|
453 |
+
out = (out + self._shortcut(x)) / math.sqrt(2)
|
454 |
+
return out
|
455 |
+
|
456 |
+
class UpSample1d(nn.Module):
|
457 |
+
def __init__(self, layer_type):
|
458 |
+
super().__init__()
|
459 |
+
self.layer_type = layer_type
|
460 |
+
|
461 |
+
def forward(self, x):
|
462 |
+
if self.layer_type == 'none':
|
463 |
+
return x
|
464 |
+
else:
|
465 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
466 |
+
|
467 |
+
class Decoder(nn.Module):
|
468 |
+
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
469 |
+
resblock_kernel_sizes = [3,7,11],
|
470 |
+
upsample_rates = [10, 6],
|
471 |
+
upsample_initial_channel=512,
|
472 |
+
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
473 |
+
upsample_kernel_sizes=[20, 12],
|
474 |
+
gen_istft_n_fft=20, gen_istft_hop_size=5):
|
475 |
+
super().__init__()
|
476 |
+
|
477 |
+
self.decode = nn.ModuleList()
|
478 |
+
|
479 |
+
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
480 |
+
|
481 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
482 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
483 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
484 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
485 |
+
|
486 |
+
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
487 |
+
|
488 |
+
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
489 |
+
|
490 |
+
self.asr_res = nn.Sequential(
|
491 |
+
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
492 |
+
)
|
493 |
+
|
494 |
+
|
495 |
+
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
|
496 |
+
upsample_initial_channel, resblock_dilation_sizes,
|
497 |
+
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
|
498 |
+
|
499 |
+
def forward(self, asr, F0_curve, N, s):
|
500 |
+
if self.training:
|
501 |
+
downlist = [0, 3, 7]
|
502 |
+
F0_down = downlist[random.randint(0, 2)]
|
503 |
+
downlist = [0, 3, 7, 15]
|
504 |
+
N_down = downlist[random.randint(0, 3)]
|
505 |
+
if F0_down:
|
506 |
+
F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
|
507 |
+
if N_down:
|
508 |
+
N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
|
509 |
+
|
510 |
+
|
511 |
+
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
512 |
+
N = self.N_conv(N.unsqueeze(1))
|
513 |
+
|
514 |
+
x = torch.cat([asr, F0, N], axis=1)
|
515 |
+
x = self.encode(x, s)
|
516 |
+
|
517 |
+
asr_res = self.asr_res(asr)
|
518 |
+
|
519 |
+
res = True
|
520 |
+
for block in self.decode:
|
521 |
+
if res:
|
522 |
+
x = torch.cat([x, asr_res, F0, N], axis=1)
|
523 |
+
x = block(x, s)
|
524 |
+
if block.upsample_type != "none":
|
525 |
+
res = False
|
526 |
+
|
527 |
+
x = self.generator(x, s, F0_curve)
|
528 |
+
return x
|
529 |
+
|
530 |
+
|
Modules/slmadv.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
class SLMAdversarialLoss(torch.nn.Module):
|
6 |
+
|
7 |
+
def __init__(self, model, wl, sampler, min_len, max_len, batch_percentage=0.5, skip_update=10, sig=1.5):
|
8 |
+
super(SLMAdversarialLoss, self).__init__()
|
9 |
+
self.model = model
|
10 |
+
self.wl = wl
|
11 |
+
self.sampler = sampler
|
12 |
+
|
13 |
+
self.min_len = min_len
|
14 |
+
self.max_len = max_len
|
15 |
+
self.batch_percentage = batch_percentage
|
16 |
+
|
17 |
+
self.sig = sig
|
18 |
+
self.skip_update = skip_update
|
19 |
+
|
20 |
+
def forward(self, iters, y_rec_gt, y_rec_gt_pred, waves, mel_input_length, ref_text, ref_lengths, use_ind, s_trg, ref_s=None):
|
21 |
+
text_mask = length_to_mask(ref_lengths).to(ref_text.device)
|
22 |
+
bert_dur = self.model.bert(ref_text, attention_mask=(~text_mask).int())
|
23 |
+
d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
|
24 |
+
|
25 |
+
if use_ind and np.random.rand() < 0.5:
|
26 |
+
s_preds = s_trg
|
27 |
+
else:
|
28 |
+
num_steps = np.random.randint(3, 5)
|
29 |
+
if ref_s is not None:
|
30 |
+
s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
|
31 |
+
embedding=bert_dur,
|
32 |
+
embedding_scale=1,
|
33 |
+
features=ref_s, # reference from the same speaker as the embedding
|
34 |
+
embedding_mask_proba=0.1,
|
35 |
+
num_steps=num_steps).squeeze(1)
|
36 |
+
else:
|
37 |
+
s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
|
38 |
+
embedding=bert_dur,
|
39 |
+
embedding_scale=1,
|
40 |
+
embedding_mask_proba=0.1,
|
41 |
+
num_steps=num_steps).squeeze(1)
|
42 |
+
|
43 |
+
s_dur = s_preds[:, 128:]
|
44 |
+
s = s_preds[:, :128]
|
45 |
+
|
46 |
+
d, _ = self.model.predictor(d_en, s_dur,
|
47 |
+
ref_lengths,
|
48 |
+
torch.randn(ref_lengths.shape[0], ref_lengths.max(), 2).to(ref_text.device),
|
49 |
+
text_mask)
|
50 |
+
|
51 |
+
bib = 0
|
52 |
+
|
53 |
+
output_lengths = []
|
54 |
+
attn_preds = []
|
55 |
+
|
56 |
+
# differentiable duration modeling
|
57 |
+
for _s2s_pred, _text_length in zip(d, ref_lengths):
|
58 |
+
|
59 |
+
_s2s_pred_org = _s2s_pred[:_text_length, :]
|
60 |
+
|
61 |
+
_s2s_pred = torch.sigmoid(_s2s_pred_org)
|
62 |
+
_dur_pred = _s2s_pred.sum(axis=-1)
|
63 |
+
|
64 |
+
l = int(torch.round(_s2s_pred.sum()).item())
|
65 |
+
t = torch.arange(0, l).expand(l)
|
66 |
+
|
67 |
+
t = torch.arange(0, l).unsqueeze(0).expand((len(_s2s_pred), l)).to(ref_text.device)
|
68 |
+
loc = torch.cumsum(_dur_pred, dim=0) - _dur_pred / 2
|
69 |
+
|
70 |
+
h = torch.exp(-0.5 * torch.square(t - (l - loc.unsqueeze(-1))) / (self.sig)**2)
|
71 |
+
|
72 |
+
out = torch.nn.functional.conv1d(_s2s_pred_org.unsqueeze(0),
|
73 |
+
h.unsqueeze(1),
|
74 |
+
padding=h.shape[-1] - 1, groups=int(_text_length))[..., :l]
|
75 |
+
attn_preds.append(F.softmax(out.squeeze(), dim=0))
|
76 |
+
|
77 |
+
output_lengths.append(l)
|
78 |
+
|
79 |
+
max_len = max(output_lengths)
|
80 |
+
|
81 |
+
with torch.no_grad():
|
82 |
+
t_en = self.model.text_encoder(ref_text, ref_lengths, text_mask)
|
83 |
+
|
84 |
+
s2s_attn = torch.zeros(len(ref_lengths), int(ref_lengths.max()), max_len).to(ref_text.device)
|
85 |
+
for bib in range(len(output_lengths)):
|
86 |
+
s2s_attn[bib, :ref_lengths[bib], :output_lengths[bib]] = attn_preds[bib]
|
87 |
+
|
88 |
+
asr_pred = t_en @ s2s_attn
|
89 |
+
|
90 |
+
_, p_pred = self.model.predictor(d_en, s_dur,
|
91 |
+
ref_lengths,
|
92 |
+
s2s_attn,
|
93 |
+
text_mask)
|
94 |
+
|
95 |
+
mel_len = max(int(min(output_lengths) / 2 - 1), self.min_len // 2)
|
96 |
+
mel_len = min(mel_len, self.max_len // 2)
|
97 |
+
|
98 |
+
# get clips
|
99 |
+
|
100 |
+
en = []
|
101 |
+
p_en = []
|
102 |
+
sp = []
|
103 |
+
|
104 |
+
F0_fakes = []
|
105 |
+
N_fakes = []
|
106 |
+
|
107 |
+
wav = []
|
108 |
+
|
109 |
+
for bib in range(len(output_lengths)):
|
110 |
+
mel_length_pred = output_lengths[bib]
|
111 |
+
mel_length_gt = int(mel_input_length[bib].item() / 2)
|
112 |
+
if mel_length_gt <= mel_len or mel_length_pred <= mel_len:
|
113 |
+
continue
|
114 |
+
|
115 |
+
sp.append(s_preds[bib])
|
116 |
+
|
117 |
+
random_start = np.random.randint(0, mel_length_pred - mel_len)
|
118 |
+
en.append(asr_pred[bib, :, random_start:random_start+mel_len])
|
119 |
+
p_en.append(p_pred[bib, :, random_start:random_start+mel_len])
|
120 |
+
|
121 |
+
# get ground truth clips
|
122 |
+
random_start = np.random.randint(0, mel_length_gt - mel_len)
|
123 |
+
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
|
124 |
+
wav.append(torch.from_numpy(y).to(ref_text.device))
|
125 |
+
|
126 |
+
if len(wav) >= self.batch_percentage * len(waves): # prevent OOM due to longer lengths
|
127 |
+
break
|
128 |
+
|
129 |
+
if len(sp) <= 1:
|
130 |
+
return None
|
131 |
+
|
132 |
+
sp = torch.stack(sp)
|
133 |
+
wav = torch.stack(wav).float()
|
134 |
+
en = torch.stack(en)
|
135 |
+
p_en = torch.stack(p_en)
|
136 |
+
|
137 |
+
F0_fake, N_fake = self.model.predictor.F0Ntrain(p_en, sp[:, 128:])
|
138 |
+
y_pred = self.model.decoder(en, F0_fake, N_fake, sp[:, :128])
|
139 |
+
|
140 |
+
# discriminator loss
|
141 |
+
if (iters + 1) % self.skip_update == 0:
|
142 |
+
if np.random.randint(0, 2) == 0:
|
143 |
+
wav = y_rec_gt_pred
|
144 |
+
use_rec = True
|
145 |
+
else:
|
146 |
+
use_rec = False
|
147 |
+
|
148 |
+
crop_size = min(wav.size(-1), y_pred.size(-1))
|
149 |
+
if use_rec: # use reconstructed (shorter lengths), do length invariant regularization
|
150 |
+
if wav.size(-1) > y_pred.size(-1):
|
151 |
+
real_GP = wav[:, : , :crop_size]
|
152 |
+
out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
|
153 |
+
out_org = self.wl.discriminator_forward(wav.detach().squeeze())
|
154 |
+
loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])
|
155 |
+
|
156 |
+
if np.random.randint(0, 2) == 0:
|
157 |
+
d_loss = self.wl.discriminator(real_GP.detach().squeeze(), y_pred.detach().squeeze()).mean()
|
158 |
+
else:
|
159 |
+
d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
|
160 |
+
else:
|
161 |
+
real_GP = y_pred[:, : , :crop_size]
|
162 |
+
out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
|
163 |
+
out_org = self.wl.discriminator_forward(y_pred.detach().squeeze())
|
164 |
+
loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])
|
165 |
+
|
166 |
+
if np.random.randint(0, 2) == 0:
|
167 |
+
d_loss = self.wl.discriminator(wav.detach().squeeze(), real_GP.detach().squeeze()).mean()
|
168 |
+
else:
|
169 |
+
d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
|
170 |
+
|
171 |
+
# regularization (ignore length variation)
|
172 |
+
d_loss += loss_reg
|
173 |
+
|
174 |
+
out_gt = self.wl.discriminator_forward(y_rec_gt.detach().squeeze())
|
175 |
+
out_rec = self.wl.discriminator_forward(y_rec_gt_pred.detach().squeeze())
|
176 |
+
|
177 |
+
# regularization (ignore reconstruction artifacts)
|
178 |
+
d_loss += F.l1_loss(out_gt, out_rec)
|
179 |
+
|
180 |
+
else:
|
181 |
+
d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
|
182 |
+
else:
|
183 |
+
d_loss = 0
|
184 |
+
|
185 |
+
# generator loss
|
186 |
+
gen_loss = self.wl.generator(y_pred.squeeze())
|
187 |
+
|
188 |
+
gen_loss = gen_loss.mean()
|
189 |
+
|
190 |
+
return d_loss, gen_loss, y_pred.detach().cpu().numpy()
|
191 |
+
|
192 |
+
def length_to_mask(lengths):
|
193 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
194 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
195 |
+
return mask
|
Modules/utils.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def init_weights(m, mean=0.0, std=0.01):
|
2 |
+
classname = m.__class__.__name__
|
3 |
+
if classname.find("Conv") != -1:
|
4 |
+
m.weight.data.normal_(mean, std)
|
5 |
+
|
6 |
+
|
7 |
+
def apply_weight_norm(m):
|
8 |
+
classname = m.__class__.__name__
|
9 |
+
if classname.find("Conv") != -1:
|
10 |
+
weight_norm(m)
|
11 |
+
|
12 |
+
|
13 |
+
def get_padding(kernel_size, dilation=1):
|
14 |
+
return int((kernel_size*dilation - dilation)/2)
|
Utils/ASR/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
Utils/ASR/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (164 Bytes). View file
|
|
Utils/ASR/__pycache__/layers.cpython-311.pyc
ADDED
Binary file (20.6 kB). View file
|
|
Utils/ASR/__pycache__/models.cpython-311.pyc
ADDED
Binary file (12.3 kB). View file
|
|
Utils/ASR/config.yml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
log_dir: "logs/20201006"
|
2 |
+
save_freq: 5
|
3 |
+
device: "cuda"
|
4 |
+
epochs: 180
|
5 |
+
batch_size: 64
|
6 |
+
pretrained_model: ""
|
7 |
+
train_data: "ASRDataset/train_list.txt"
|
8 |
+
val_data: "ASRDataset/val_list.txt"
|
9 |
+
|
10 |
+
dataset_params:
|
11 |
+
data_augmentation: false
|
12 |
+
|
13 |
+
preprocess_parasm:
|
14 |
+
sr: 24000
|
15 |
+
spect_params:
|
16 |
+
n_fft: 2048
|
17 |
+
win_length: 1200
|
18 |
+
hop_length: 300
|
19 |
+
mel_params:
|
20 |
+
n_mels: 80
|
21 |
+
|
22 |
+
model_params:
|
23 |
+
input_dim: 80
|
24 |
+
hidden_dim: 256
|
25 |
+
n_token: 178
|
26 |
+
token_embedding_dim: 512
|
27 |
+
|
28 |
+
optimizer_params:
|
29 |
+
lr: 0.0005
|
Utils/ASR/epoch_00080.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fedd55a1234b0c56e1e8b509c74edf3a5e2f27106a66038a4a946047a775bd6c
|
3 |
+
size 94552811
|
Utils/ASR/layers.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from typing import Optional, Any
|
5 |
+
from torch import Tensor
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torchaudio
|
8 |
+
import torchaudio.functional as audio_F
|
9 |
+
|
10 |
+
import random
|
11 |
+
random.seed(0)
|
12 |
+
|
13 |
+
|
14 |
+
def _get_activation_fn(activ):
|
15 |
+
if activ == 'relu':
|
16 |
+
return nn.ReLU()
|
17 |
+
elif activ == 'lrelu':
|
18 |
+
return nn.LeakyReLU(0.2)
|
19 |
+
elif activ == 'swish':
|
20 |
+
return lambda x: x*torch.sigmoid(x)
|
21 |
+
else:
|
22 |
+
raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
|
23 |
+
|
24 |
+
class LinearNorm(torch.nn.Module):
|
25 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
26 |
+
super(LinearNorm, self).__init__()
|
27 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
28 |
+
|
29 |
+
torch.nn.init.xavier_uniform_(
|
30 |
+
self.linear_layer.weight,
|
31 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
return self.linear_layer(x)
|
35 |
+
|
36 |
+
|
37 |
+
class ConvNorm(torch.nn.Module):
|
38 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
|
39 |
+
padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
|
40 |
+
super(ConvNorm, self).__init__()
|
41 |
+
if padding is None:
|
42 |
+
assert(kernel_size % 2 == 1)
|
43 |
+
padding = int(dilation * (kernel_size - 1) / 2)
|
44 |
+
|
45 |
+
self.conv = torch.nn.Conv1d(in_channels, out_channels,
|
46 |
+
kernel_size=kernel_size, stride=stride,
|
47 |
+
padding=padding, dilation=dilation,
|
48 |
+
bias=bias)
|
49 |
+
|
50 |
+
torch.nn.init.xavier_uniform_(
|
51 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
52 |
+
|
53 |
+
def forward(self, signal):
|
54 |
+
conv_signal = self.conv(signal)
|
55 |
+
return conv_signal
|
56 |
+
|
57 |
+
class CausualConv(nn.Module):
|
58 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
|
59 |
+
super(CausualConv, self).__init__()
|
60 |
+
if padding is None:
|
61 |
+
assert(kernel_size % 2 == 1)
|
62 |
+
padding = int(dilation * (kernel_size - 1) / 2) * 2
|
63 |
+
else:
|
64 |
+
self.padding = padding * 2
|
65 |
+
self.conv = nn.Conv1d(in_channels, out_channels,
|
66 |
+
kernel_size=kernel_size, stride=stride,
|
67 |
+
padding=self.padding,
|
68 |
+
dilation=dilation,
|
69 |
+
bias=bias)
|
70 |
+
|
71 |
+
torch.nn.init.xavier_uniform_(
|
72 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
x = self.conv(x)
|
76 |
+
x = x[:, :, :-self.padding]
|
77 |
+
return x
|
78 |
+
|
79 |
+
class CausualBlock(nn.Module):
|
80 |
+
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
|
81 |
+
super(CausualBlock, self).__init__()
|
82 |
+
self.blocks = nn.ModuleList([
|
83 |
+
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
84 |
+
for i in range(n_conv)])
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
for block in self.blocks:
|
88 |
+
res = x
|
89 |
+
x = block(x)
|
90 |
+
x += res
|
91 |
+
return x
|
92 |
+
|
93 |
+
def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
|
94 |
+
layers = [
|
95 |
+
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
96 |
+
_get_activation_fn(activ),
|
97 |
+
nn.BatchNorm1d(hidden_dim),
|
98 |
+
nn.Dropout(p=dropout_p),
|
99 |
+
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
100 |
+
_get_activation_fn(activ),
|
101 |
+
nn.Dropout(p=dropout_p)
|
102 |
+
]
|
103 |
+
return nn.Sequential(*layers)
|
104 |
+
|
105 |
+
class ConvBlock(nn.Module):
|
106 |
+
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
|
107 |
+
super().__init__()
|
108 |
+
self._n_groups = 8
|
109 |
+
self.blocks = nn.ModuleList([
|
110 |
+
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
111 |
+
for i in range(n_conv)])
|
112 |
+
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
for block in self.blocks:
|
116 |
+
res = x
|
117 |
+
x = block(x)
|
118 |
+
x += res
|
119 |
+
return x
|
120 |
+
|
121 |
+
def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
|
122 |
+
layers = [
|
123 |
+
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
124 |
+
_get_activation_fn(activ),
|
125 |
+
nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
|
126 |
+
nn.Dropout(p=dropout_p),
|
127 |
+
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
128 |
+
_get_activation_fn(activ),
|
129 |
+
nn.Dropout(p=dropout_p)
|
130 |
+
]
|
131 |
+
return nn.Sequential(*layers)
|
132 |
+
|
133 |
+
class LocationLayer(nn.Module):
|
134 |
+
def __init__(self, attention_n_filters, attention_kernel_size,
|
135 |
+
attention_dim):
|
136 |
+
super(LocationLayer, self).__init__()
|
137 |
+
padding = int((attention_kernel_size - 1) / 2)
|
138 |
+
self.location_conv = ConvNorm(2, attention_n_filters,
|
139 |
+
kernel_size=attention_kernel_size,
|
140 |
+
padding=padding, bias=False, stride=1,
|
141 |
+
dilation=1)
|
142 |
+
self.location_dense = LinearNorm(attention_n_filters, attention_dim,
|
143 |
+
bias=False, w_init_gain='tanh')
|
144 |
+
|
145 |
+
def forward(self, attention_weights_cat):
|
146 |
+
processed_attention = self.location_conv(attention_weights_cat)
|
147 |
+
processed_attention = processed_attention.transpose(1, 2)
|
148 |
+
processed_attention = self.location_dense(processed_attention)
|
149 |
+
return processed_attention
|
150 |
+
|
151 |
+
|
152 |
+
class Attention(nn.Module):
|
153 |
+
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
154 |
+
attention_location_n_filters, attention_location_kernel_size):
|
155 |
+
super(Attention, self).__init__()
|
156 |
+
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
157 |
+
bias=False, w_init_gain='tanh')
|
158 |
+
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
159 |
+
w_init_gain='tanh')
|
160 |
+
self.v = LinearNorm(attention_dim, 1, bias=False)
|
161 |
+
self.location_layer = LocationLayer(attention_location_n_filters,
|
162 |
+
attention_location_kernel_size,
|
163 |
+
attention_dim)
|
164 |
+
self.score_mask_value = -float("inf")
|
165 |
+
|
166 |
+
def get_alignment_energies(self, query, processed_memory,
|
167 |
+
attention_weights_cat):
|
168 |
+
"""
|
169 |
+
PARAMS
|
170 |
+
------
|
171 |
+
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
172 |
+
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
173 |
+
attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
|
174 |
+
RETURNS
|
175 |
+
-------
|
176 |
+
alignment (batch, max_time)
|
177 |
+
"""
|
178 |
+
|
179 |
+
processed_query = self.query_layer(query.unsqueeze(1))
|
180 |
+
processed_attention_weights = self.location_layer(attention_weights_cat)
|
181 |
+
energies = self.v(torch.tanh(
|
182 |
+
processed_query + processed_attention_weights + processed_memory))
|
183 |
+
|
184 |
+
energies = energies.squeeze(-1)
|
185 |
+
return energies
|
186 |
+
|
187 |
+
def forward(self, attention_hidden_state, memory, processed_memory,
|
188 |
+
attention_weights_cat, mask):
|
189 |
+
"""
|
190 |
+
PARAMS
|
191 |
+
------
|
192 |
+
attention_hidden_state: attention rnn last output
|
193 |
+
memory: encoder outputs
|
194 |
+
processed_memory: processed encoder outputs
|
195 |
+
attention_weights_cat: previous and cummulative attention weights
|
196 |
+
mask: binary mask for padded data
|
197 |
+
"""
|
198 |
+
alignment = self.get_alignment_energies(
|
199 |
+
attention_hidden_state, processed_memory, attention_weights_cat)
|
200 |
+
|
201 |
+
if mask is not None:
|
202 |
+
alignment.data.masked_fill_(mask, self.score_mask_value)
|
203 |
+
|
204 |
+
attention_weights = F.softmax(alignment, dim=1)
|
205 |
+
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
206 |
+
attention_context = attention_context.squeeze(1)
|
207 |
+
|
208 |
+
return attention_context, attention_weights
|
209 |
+
|
210 |
+
|
211 |
+
class ForwardAttentionV2(nn.Module):
|
212 |
+
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
213 |
+
attention_location_n_filters, attention_location_kernel_size):
|
214 |
+
super(ForwardAttentionV2, self).__init__()
|
215 |
+
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
216 |
+
bias=False, w_init_gain='tanh')
|
217 |
+
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
218 |
+
w_init_gain='tanh')
|
219 |
+
self.v = LinearNorm(attention_dim, 1, bias=False)
|
220 |
+
self.location_layer = LocationLayer(attention_location_n_filters,
|
221 |
+
attention_location_kernel_size,
|
222 |
+
attention_dim)
|
223 |
+
self.score_mask_value = -float(1e20)
|
224 |
+
|
225 |
+
def get_alignment_energies(self, query, processed_memory,
|
226 |
+
attention_weights_cat):
|
227 |
+
"""
|
228 |
+
PARAMS
|
229 |
+
------
|
230 |
+
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
231 |
+
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
232 |
+
attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
|
233 |
+
RETURNS
|
234 |
+
-------
|
235 |
+
alignment (batch, max_time)
|
236 |
+
"""
|
237 |
+
|
238 |
+
processed_query = self.query_layer(query.unsqueeze(1))
|
239 |
+
processed_attention_weights = self.location_layer(attention_weights_cat)
|
240 |
+
energies = self.v(torch.tanh(
|
241 |
+
processed_query + processed_attention_weights + processed_memory))
|
242 |
+
|
243 |
+
energies = energies.squeeze(-1)
|
244 |
+
return energies
|
245 |
+
|
246 |
+
def forward(self, attention_hidden_state, memory, processed_memory,
|
247 |
+
attention_weights_cat, mask, log_alpha):
|
248 |
+
"""
|
249 |
+
PARAMS
|
250 |
+
------
|
251 |
+
attention_hidden_state: attention rnn last output
|
252 |
+
memory: encoder outputs
|
253 |
+
processed_memory: processed encoder outputs
|
254 |
+
attention_weights_cat: previous and cummulative attention weights
|
255 |
+
mask: binary mask for padded data
|
256 |
+
"""
|
257 |
+
log_energy = self.get_alignment_energies(
|
258 |
+
attention_hidden_state, processed_memory, attention_weights_cat)
|
259 |
+
|
260 |
+
#log_energy =
|
261 |
+
|
262 |
+
if mask is not None:
|
263 |
+
log_energy.data.masked_fill_(mask, self.score_mask_value)
|
264 |
+
|
265 |
+
#attention_weights = F.softmax(alignment, dim=1)
|
266 |
+
|
267 |
+
#content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
|
268 |
+
#log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
|
269 |
+
|
270 |
+
#log_total_score = log_alpha + content_score
|
271 |
+
|
272 |
+
#previous_attention_weights = attention_weights_cat[:,0,:]
|
273 |
+
|
274 |
+
log_alpha_shift_padded = []
|
275 |
+
max_time = log_energy.size(1)
|
276 |
+
for sft in range(2):
|
277 |
+
shifted = log_alpha[:,:max_time-sft]
|
278 |
+
shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
|
279 |
+
log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
|
280 |
+
|
281 |
+
biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
|
282 |
+
|
283 |
+
log_alpha_new = biased + log_energy
|
284 |
+
|
285 |
+
attention_weights = F.softmax(log_alpha_new, dim=1)
|
286 |
+
|
287 |
+
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
288 |
+
attention_context = attention_context.squeeze(1)
|
289 |
+
|
290 |
+
return attention_context, attention_weights, log_alpha_new
|
291 |
+
|
292 |
+
|
293 |
+
class PhaseShuffle2d(nn.Module):
|
294 |
+
def __init__(self, n=2):
|
295 |
+
super(PhaseShuffle2d, self).__init__()
|
296 |
+
self.n = n
|
297 |
+
self.random = random.Random(1)
|
298 |
+
|
299 |
+
def forward(self, x, move=None):
|
300 |
+
# x.size = (B, C, M, L)
|
301 |
+
if move is None:
|
302 |
+
move = self.random.randint(-self.n, self.n)
|
303 |
+
|
304 |
+
if move == 0:
|
305 |
+
return x
|
306 |
+
else:
|
307 |
+
left = x[:, :, :, :move]
|
308 |
+
right = x[:, :, :, move:]
|
309 |
+
shuffled = torch.cat([right, left], dim=3)
|
310 |
+
return shuffled
|
311 |
+
|
312 |
+
class PhaseShuffle1d(nn.Module):
|
313 |
+
def __init__(self, n=2):
|
314 |
+
super(PhaseShuffle1d, self).__init__()
|
315 |
+
self.n = n
|
316 |
+
self.random = random.Random(1)
|
317 |
+
|
318 |
+
def forward(self, x, move=None):
|
319 |
+
# x.size = (B, C, M, L)
|
320 |
+
if move is None:
|
321 |
+
move = self.random.randint(-self.n, self.n)
|
322 |
+
|
323 |
+
if move == 0:
|
324 |
+
return x
|
325 |
+
else:
|
326 |
+
left = x[:, :, :move]
|
327 |
+
right = x[:, :, move:]
|
328 |
+
shuffled = torch.cat([right, left], dim=2)
|
329 |
+
|
330 |
+
return shuffled
|
331 |
+
|
332 |
+
class MFCC(nn.Module):
|
333 |
+
def __init__(self, n_mfcc=40, n_mels=80):
|
334 |
+
super(MFCC, self).__init__()
|
335 |
+
self.n_mfcc = n_mfcc
|
336 |
+
self.n_mels = n_mels
|
337 |
+
self.norm = 'ortho'
|
338 |
+
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
|
339 |
+
self.register_buffer('dct_mat', dct_mat)
|
340 |
+
|
341 |
+
def forward(self, mel_specgram):
|
342 |
+
if len(mel_specgram.shape) == 2:
|
343 |
+
mel_specgram = mel_specgram.unsqueeze(0)
|
344 |
+
unsqueezed = True
|
345 |
+
else:
|
346 |
+
unsqueezed = False
|
347 |
+
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
|
348 |
+
# -> (channel, time, n_mfcc).tranpose(...)
|
349 |
+
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
|
350 |
+
|
351 |
+
# unpack batch
|
352 |
+
if unsqueezed:
|
353 |
+
mfcc = mfcc.squeeze(0)
|
354 |
+
return mfcc
|
Utils/ASR/models.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import TransformerEncoder
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
|
7 |
+
|
8 |
+
class ASRCNN(nn.Module):
|
9 |
+
def __init__(self,
|
10 |
+
input_dim=80,
|
11 |
+
hidden_dim=256,
|
12 |
+
n_token=35,
|
13 |
+
n_layers=6,
|
14 |
+
token_embedding_dim=256,
|
15 |
+
|
16 |
+
):
|
17 |
+
super().__init__()
|
18 |
+
self.n_token = n_token
|
19 |
+
self.n_down = 1
|
20 |
+
self.to_mfcc = MFCC()
|
21 |
+
self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
|
22 |
+
self.cnns = nn.Sequential(
|
23 |
+
*[nn.Sequential(
|
24 |
+
ConvBlock(hidden_dim),
|
25 |
+
nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
|
26 |
+
) for n in range(n_layers)])
|
27 |
+
self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
|
28 |
+
self.ctc_linear = nn.Sequential(
|
29 |
+
LinearNorm(hidden_dim//2, hidden_dim),
|
30 |
+
nn.ReLU(),
|
31 |
+
LinearNorm(hidden_dim, n_token))
|
32 |
+
self.asr_s2s = ASRS2S(
|
33 |
+
embedding_dim=token_embedding_dim,
|
34 |
+
hidden_dim=hidden_dim//2,
|
35 |
+
n_token=n_token)
|
36 |
+
|
37 |
+
def forward(self, x, src_key_padding_mask=None, text_input=None):
|
38 |
+
x = self.to_mfcc(x)
|
39 |
+
x = self.init_cnn(x)
|
40 |
+
x = self.cnns(x)
|
41 |
+
x = self.projection(x)
|
42 |
+
x = x.transpose(1, 2)
|
43 |
+
ctc_logit = self.ctc_linear(x)
|
44 |
+
if text_input is not None:
|
45 |
+
_, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
|
46 |
+
return ctc_logit, s2s_logit, s2s_attn
|
47 |
+
else:
|
48 |
+
return ctc_logit
|
49 |
+
|
50 |
+
def get_feature(self, x):
|
51 |
+
x = self.to_mfcc(x.squeeze(1))
|
52 |
+
x = self.init_cnn(x)
|
53 |
+
x = self.cnns(x)
|
54 |
+
x = self.projection(x)
|
55 |
+
return x
|
56 |
+
|
57 |
+
def length_to_mask(self, lengths):
|
58 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
59 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
|
60 |
+
return mask
|
61 |
+
|
62 |
+
def get_future_mask(self, out_length, unmask_future_steps=0):
|
63 |
+
"""
|
64 |
+
Args:
|
65 |
+
out_length (int): returned mask shape is (out_length, out_length).
|
66 |
+
unmask_futre_steps (int): unmasking future step size.
|
67 |
+
Return:
|
68 |
+
mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
|
69 |
+
"""
|
70 |
+
index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
|
71 |
+
mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
|
72 |
+
return mask
|
73 |
+
|
74 |
+
class ASRS2S(nn.Module):
|
75 |
+
def __init__(self,
|
76 |
+
embedding_dim=256,
|
77 |
+
hidden_dim=512,
|
78 |
+
n_location_filters=32,
|
79 |
+
location_kernel_size=63,
|
80 |
+
n_token=40):
|
81 |
+
super(ASRS2S, self).__init__()
|
82 |
+
self.embedding = nn.Embedding(n_token, embedding_dim)
|
83 |
+
val_range = math.sqrt(6 / hidden_dim)
|
84 |
+
self.embedding.weight.data.uniform_(-val_range, val_range)
|
85 |
+
|
86 |
+
self.decoder_rnn_dim = hidden_dim
|
87 |
+
self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
|
88 |
+
self.attention_layer = Attention(
|
89 |
+
self.decoder_rnn_dim,
|
90 |
+
hidden_dim,
|
91 |
+
hidden_dim,
|
92 |
+
n_location_filters,
|
93 |
+
location_kernel_size
|
94 |
+
)
|
95 |
+
self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
|
96 |
+
self.project_to_hidden = nn.Sequential(
|
97 |
+
LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
|
98 |
+
nn.Tanh())
|
99 |
+
self.sos = 1
|
100 |
+
self.eos = 2
|
101 |
+
|
102 |
+
def initialize_decoder_states(self, memory, mask):
|
103 |
+
"""
|
104 |
+
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
105 |
+
"""
|
106 |
+
B, L, H = memory.shape
|
107 |
+
self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
108 |
+
self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
109 |
+
self.attention_weights = torch.zeros((B, L)).type_as(memory)
|
110 |
+
self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
|
111 |
+
self.attention_context = torch.zeros((B, H)).type_as(memory)
|
112 |
+
self.memory = memory
|
113 |
+
self.processed_memory = self.attention_layer.memory_layer(memory)
|
114 |
+
self.mask = mask
|
115 |
+
self.unk_index = 3
|
116 |
+
self.random_mask = 0.1
|
117 |
+
|
118 |
+
def forward(self, memory, memory_mask, text_input):
|
119 |
+
"""
|
120 |
+
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
121 |
+
moemory_mask.shape = (B, L, )
|
122 |
+
texts_input.shape = (B, T)
|
123 |
+
"""
|
124 |
+
self.initialize_decoder_states(memory, memory_mask)
|
125 |
+
# text random mask
|
126 |
+
random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
|
127 |
+
_text_input = text_input.clone()
|
128 |
+
_text_input.masked_fill_(random_mask, self.unk_index)
|
129 |
+
decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
|
130 |
+
start_embedding = self.embedding(
|
131 |
+
torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
|
132 |
+
decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
|
133 |
+
|
134 |
+
hidden_outputs, logit_outputs, alignments = [], [], []
|
135 |
+
while len(hidden_outputs) < decoder_inputs.size(0):
|
136 |
+
|
137 |
+
decoder_input = decoder_inputs[len(hidden_outputs)]
|
138 |
+
hidden, logit, attention_weights = self.decode(decoder_input)
|
139 |
+
hidden_outputs += [hidden]
|
140 |
+
logit_outputs += [logit]
|
141 |
+
alignments += [attention_weights]
|
142 |
+
|
143 |
+
hidden_outputs, logit_outputs, alignments = \
|
144 |
+
self.parse_decoder_outputs(
|
145 |
+
hidden_outputs, logit_outputs, alignments)
|
146 |
+
|
147 |
+
return hidden_outputs, logit_outputs, alignments
|
148 |
+
|
149 |
+
|
150 |
+
def decode(self, decoder_input):
|
151 |
+
|
152 |
+
cell_input = torch.cat((decoder_input, self.attention_context), -1)
|
153 |
+
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
|
154 |
+
cell_input,
|
155 |
+
(self.decoder_hidden, self.decoder_cell))
|
156 |
+
|
157 |
+
attention_weights_cat = torch.cat(
|
158 |
+
(self.attention_weights.unsqueeze(1),
|
159 |
+
self.attention_weights_cum.unsqueeze(1)),dim=1)
|
160 |
+
|
161 |
+
self.attention_context, self.attention_weights = self.attention_layer(
|
162 |
+
self.decoder_hidden,
|
163 |
+
self.memory,
|
164 |
+
self.processed_memory,
|
165 |
+
attention_weights_cat,
|
166 |
+
self.mask)
|
167 |
+
|
168 |
+
self.attention_weights_cum += self.attention_weights
|
169 |
+
|
170 |
+
hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
|
171 |
+
hidden = self.project_to_hidden(hidden_and_context)
|
172 |
+
|
173 |
+
# dropout to increasing g
|
174 |
+
logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
|
175 |
+
|
176 |
+
return hidden, logit, self.attention_weights
|
177 |
+
|
178 |
+
def parse_decoder_outputs(self, hidden, logit, alignments):
|
179 |
+
|
180 |
+
# -> [B, T_out + 1, max_time]
|
181 |
+
alignments = torch.stack(alignments).transpose(0,1)
|
182 |
+
# [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
|
183 |
+
logit = torch.stack(logit).transpose(0, 1).contiguous()
|
184 |
+
hidden = torch.stack(hidden).transpose(0, 1).contiguous()
|
185 |
+
|
186 |
+
return hidden, logit, alignments
|
Utils/JDC/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
Utils/JDC/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (164 Bytes). View file
|
|
Utils/JDC/__pycache__/model.cpython-311.pyc
ADDED
Binary file (10.3 kB). View file
|
|
Utils/JDC/bst.t7
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54dc94364b97e18ac1dfa6287714ed121248cfaac4cfd39d061c6e0a089ef169
|
3 |
+
size 21029926
|
Utils/JDC/model.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of model from:
|
3 |
+
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
|
4 |
+
Convolutional Recurrent Neural Networks" (2019)
|
5 |
+
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
|
6 |
+
"""
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
class JDCNet(nn.Module):
|
11 |
+
"""
|
12 |
+
Joint Detection and Classification Network model for singing voice melody.
|
13 |
+
"""
|
14 |
+
def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
|
15 |
+
super().__init__()
|
16 |
+
self.num_class = num_class
|
17 |
+
|
18 |
+
# input = (b, 1, 31, 513), b = batch size
|
19 |
+
self.conv_block = nn.Sequential(
|
20 |
+
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
|
21 |
+
nn.BatchNorm2d(num_features=64),
|
22 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
23 |
+
nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
|
24 |
+
)
|
25 |
+
|
26 |
+
# res blocks
|
27 |
+
self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
|
28 |
+
self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
|
29 |
+
self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
|
30 |
+
|
31 |
+
# pool block
|
32 |
+
self.pool_block = nn.Sequential(
|
33 |
+
nn.BatchNorm2d(num_features=256),
|
34 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
35 |
+
nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
|
36 |
+
nn.Dropout(p=0.2),
|
37 |
+
)
|
38 |
+
|
39 |
+
# maxpool layers (for auxiliary network inputs)
|
40 |
+
# in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
|
41 |
+
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
|
42 |
+
# in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
|
43 |
+
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
|
44 |
+
# in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
|
45 |
+
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
|
46 |
+
|
47 |
+
# in = (b, 640, 31, 2), out = (b, 256, 31, 2)
|
48 |
+
self.detector_conv = nn.Sequential(
|
49 |
+
nn.Conv2d(640, 256, 1, bias=False),
|
50 |
+
nn.BatchNorm2d(256),
|
51 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
52 |
+
nn.Dropout(p=0.2),
|
53 |
+
)
|
54 |
+
|
55 |
+
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
56 |
+
self.bilstm_classifier = nn.LSTM(
|
57 |
+
input_size=512, hidden_size=256,
|
58 |
+
batch_first=True, bidirectional=True) # (b, 31, 512)
|
59 |
+
|
60 |
+
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
61 |
+
self.bilstm_detector = nn.LSTM(
|
62 |
+
input_size=512, hidden_size=256,
|
63 |
+
batch_first=True, bidirectional=True) # (b, 31, 512)
|
64 |
+
|
65 |
+
# input: (b * 31, 512)
|
66 |
+
self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
|
67 |
+
|
68 |
+
# input: (b * 31, 512)
|
69 |
+
self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
|
70 |
+
|
71 |
+
# initialize weights
|
72 |
+
self.apply(self.init_weights)
|
73 |
+
|
74 |
+
def get_feature_GAN(self, x):
|
75 |
+
seq_len = x.shape[-2]
|
76 |
+
x = x.float().transpose(-1, -2)
|
77 |
+
|
78 |
+
convblock_out = self.conv_block(x)
|
79 |
+
|
80 |
+
resblock1_out = self.res_block1(convblock_out)
|
81 |
+
resblock2_out = self.res_block2(resblock1_out)
|
82 |
+
resblock3_out = self.res_block3(resblock2_out)
|
83 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
84 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
85 |
+
|
86 |
+
return poolblock_out.transpose(-1, -2)
|
87 |
+
|
88 |
+
def get_feature(self, x):
|
89 |
+
seq_len = x.shape[-2]
|
90 |
+
x = x.float().transpose(-1, -2)
|
91 |
+
|
92 |
+
convblock_out = self.conv_block(x)
|
93 |
+
|
94 |
+
resblock1_out = self.res_block1(convblock_out)
|
95 |
+
resblock2_out = self.res_block2(resblock1_out)
|
96 |
+
resblock3_out = self.res_block3(resblock2_out)
|
97 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
98 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
99 |
+
|
100 |
+
return self.pool_block[2](poolblock_out)
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
"""
|
104 |
+
Returns:
|
105 |
+
classification_prediction, detection_prediction
|
106 |
+
sizes: (b, 31, 722), (b, 31, 2)
|
107 |
+
"""
|
108 |
+
###############################
|
109 |
+
# forward pass for classifier #
|
110 |
+
###############################
|
111 |
+
seq_len = x.shape[-1]
|
112 |
+
x = x.float().transpose(-1, -2)
|
113 |
+
|
114 |
+
convblock_out = self.conv_block(x)
|
115 |
+
|
116 |
+
resblock1_out = self.res_block1(convblock_out)
|
117 |
+
resblock2_out = self.res_block2(resblock1_out)
|
118 |
+
resblock3_out = self.res_block3(resblock2_out)
|
119 |
+
|
120 |
+
|
121 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
122 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
123 |
+
GAN_feature = poolblock_out.transpose(-1, -2)
|
124 |
+
poolblock_out = self.pool_block[2](poolblock_out)
|
125 |
+
|
126 |
+
# (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
|
127 |
+
classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
|
128 |
+
classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
|
129 |
+
|
130 |
+
classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
|
131 |
+
classifier_out = self.classifier(classifier_out)
|
132 |
+
classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
|
133 |
+
|
134 |
+
# sizes: (b, 31, 722), (b, 31, 2)
|
135 |
+
# classifier output consists of predicted pitch classes per frame
|
136 |
+
# detector output consists of: (isvoice, notvoice) estimates per frame
|
137 |
+
return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
|
138 |
+
|
139 |
+
@staticmethod
|
140 |
+
def init_weights(m):
|
141 |
+
if isinstance(m, nn.Linear):
|
142 |
+
nn.init.kaiming_uniform_(m.weight)
|
143 |
+
if m.bias is not None:
|
144 |
+
nn.init.constant_(m.bias, 0)
|
145 |
+
elif isinstance(m, nn.Conv2d):
|
146 |
+
nn.init.xavier_normal_(m.weight)
|
147 |
+
elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
|
148 |
+
for p in m.parameters():
|
149 |
+
if p.data is None:
|
150 |
+
continue
|
151 |
+
|
152 |
+
if len(p.shape) >= 2:
|
153 |
+
nn.init.orthogonal_(p.data)
|
154 |
+
else:
|
155 |
+
nn.init.normal_(p.data)
|
156 |
+
|
157 |
+
|
158 |
+
class ResBlock(nn.Module):
|
159 |
+
def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
|
160 |
+
super().__init__()
|
161 |
+
self.downsample = in_channels != out_channels
|
162 |
+
|
163 |
+
# BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
|
164 |
+
self.pre_conv = nn.Sequential(
|
165 |
+
nn.BatchNorm2d(num_features=in_channels),
|
166 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
167 |
+
nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
|
168 |
+
)
|
169 |
+
|
170 |
+
# conv layers
|
171 |
+
self.conv = nn.Sequential(
|
172 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
173 |
+
kernel_size=3, padding=1, bias=False),
|
174 |
+
nn.BatchNorm2d(out_channels),
|
175 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
176 |
+
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
|
177 |
+
)
|
178 |
+
|
179 |
+
# 1 x 1 convolution layer to match the feature dimensions
|
180 |
+
self.conv1by1 = None
|
181 |
+
if self.downsample:
|
182 |
+
self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
183 |
+
|
184 |
+
def forward(self, x):
|
185 |
+
x = self.pre_conv(x)
|
186 |
+
if self.downsample:
|
187 |
+
x = self.conv(x) + self.conv1by1(x)
|
188 |
+
else:
|
189 |
+
x = self.conv(x) + x
|
190 |
+
return x
|
Utils/PLBERT/__pycache__/util.cpython-311.pyc
ADDED
Binary file (3.21 kB). View file
|
|
Utils/PLBERT/config.yml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
log_dir: "Checkpoint"
|
2 |
+
mixed_precision: "fp16"
|
3 |
+
data_folder: "wikipedia_20220301.en.processed"
|
4 |
+
batch_size: 192
|
5 |
+
save_interval: 5000
|
6 |
+
log_interval: 10
|
7 |
+
num_process: 1 # number of GPUs
|
8 |
+
num_steps: 1000000
|
9 |
+
|
10 |
+
dataset_params:
|
11 |
+
tokenizer: "transfo-xl-wt103"
|
12 |
+
token_separator: " " # token used for phoneme separator (space)
|
13 |
+
token_mask: "M" # token used for phoneme mask (M)
|
14 |
+
word_separator: 3039 # token used for word separator (<formula>)
|
15 |
+
token_maps: "token_maps.pkl" # token map path
|
16 |
+
|
17 |
+
max_mel_length: 512 # max phoneme length
|
18 |
+
|
19 |
+
word_mask_prob: 0.15 # probability to mask the entire word
|
20 |
+
phoneme_mask_prob: 0.1 # probability to mask each phoneme
|
21 |
+
replace_prob: 0.2 # probablity to replace phonemes
|
22 |
+
|
23 |
+
model_params:
|
24 |
+
vocab_size: 178
|
25 |
+
hidden_size: 768
|
26 |
+
num_attention_heads: 12
|
27 |
+
intermediate_size: 2048
|
28 |
+
max_position_embeddings: 512
|
29 |
+
num_hidden_layers: 12
|
30 |
+
dropout: 0.1
|
Utils/PLBERT/step_1000000.t7
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0714ff85804db43e06b3b0ac5749bf90cf206257c6c5916e8a98c5933b4c21e0
|
3 |
+
size 25185187
|
Utils/PLBERT/util.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import yaml
|
3 |
+
import torch
|
4 |
+
from transformers import AlbertConfig, AlbertModel
|
5 |
+
|
6 |
+
class CustomAlbert(AlbertModel):
|
7 |
+
def forward(self, *args, **kwargs):
|
8 |
+
# Call the original forward method
|
9 |
+
outputs = super().forward(*args, **kwargs)
|
10 |
+
|
11 |
+
# Only return the last_hidden_state
|
12 |
+
return outputs.last_hidden_state
|
13 |
+
|
14 |
+
|
15 |
+
def load_plbert(log_dir):
|
16 |
+
config_path = os.path.join(log_dir, "config.yml")
|
17 |
+
plbert_config = yaml.safe_load(open(config_path))
|
18 |
+
|
19 |
+
albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
|
20 |
+
bert = CustomAlbert(albert_base_configuration)
|
21 |
+
|
22 |
+
files = os.listdir(log_dir)
|
23 |
+
ckpts = []
|
24 |
+
for f in os.listdir(log_dir):
|
25 |
+
if f.startswith("step_"): ckpts.append(f)
|
26 |
+
|
27 |
+
iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
|
28 |
+
iters = sorted(iters)[-1]
|
29 |
+
|
30 |
+
checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".t7", map_location='cpu')
|
31 |
+
state_dict = checkpoint['net']
|
32 |
+
from collections import OrderedDict
|
33 |
+
new_state_dict = OrderedDict()
|
34 |
+
for k, v in state_dict.items():
|
35 |
+
name = k[7:] # remove `module.`
|
36 |
+
if name.startswith('encoder.'):
|
37 |
+
name = name[8:] # remove `encoder.`
|
38 |
+
new_state_dict[name] = v
|
39 |
+
del new_state_dict["embeddings.position_ids"]
|
40 |
+
bert.load_state_dict(new_state_dict, strict=False)
|
41 |
+
|
42 |
+
return bert
|
Utils/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
Utils/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (160 Bytes). View file
|
|
__pycache__/accent_gradio.cpython-311.pyc
ADDED
Binary file (13.6 kB). View file
|
|