Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -411,27 +411,27 @@ class Engine(object):
|
|
411 |
return self.load_image()
|
412 |
|
413 |
def get_model_average(self, which, all=False, final=False):
|
414 |
-
aux, i = [], self.index
|
415 |
if which == 'user':
|
416 |
avg_score = sum(self.stats['scores']) / len(self.stats['scores']) if self.stats['scores'] else 0
|
417 |
avg_distance = sum(self.stats['distances']) / len(self.stats['distances']) if self.stats['distances'] else 0
|
418 |
-
avg_country_accuracy = (0 if self.df['country_val'].iloc[:i].sum() == 0 else sum(self.stats['country'])/self.df['country_val'].iloc[:i].sum())*100
|
419 |
if all:
|
420 |
-
avg_city_accuracy = (0 if self.df['city_val'].iloc[:i].sum() == 0 else sum(self.stats['city'])/self.df['city_val'].iloc[:i].sum())*100
|
421 |
-
avg_area_accuracy = (0 if self.df['area_val'].iloc[:i].sum() == 0 else sum(self.stats['area'])/self.df['area_val'].iloc[:i].sum())*100
|
422 |
-
avg_region_accuracy = (0 if self.df['region_val'].iloc[:i].sum() == 0 else sum(self.stats['region'])/self.df['region_val'].iloc[:i].sum())*100
|
423 |
aux = [avg_city_accuracy, avg_area_accuracy, avg_region_accuracy]
|
424 |
which = 'You'
|
425 |
elif which == 'base':
|
426 |
-
avg_score = np.mean(self.df[['score_base']].iloc[:i])
|
427 |
-
avg_distance = np.mean(self.df[['distance_base']].iloc[:i])
|
428 |
avg_country_accuracy = self.df['accuracy_country_base'].iloc[i]
|
429 |
if all:
|
430 |
aux = [self.df['accuracy_city_base'].iloc[i], self.df['accuracy_area_base'].iloc[i], self.df['accuracy_region_base'].iloc[i]]
|
431 |
which = 'Baseline-AI'
|
432 |
elif which == 'best':
|
433 |
-
avg_score = np.mean(self.df[['score']].iloc[:i])
|
434 |
-
avg_distance = np.mean(self.df[['distance']].iloc[:i])
|
435 |
avg_country_accuracy = self.df['accuracy_country'].iloc[i]
|
436 |
if all:
|
437 |
aux = [self.df['accuracy_city_base'].iloc[i], self.df['accuracy_area_base'].iloc[i], self.df['accuracy_region_base'].iloc[i]]
|
|
|
411 |
return self.load_image()
|
412 |
|
413 |
def get_model_average(self, which, all=False, final=False):
|
414 |
+
aux, i = [], self.index
|
415 |
if which == 'user':
|
416 |
avg_score = sum(self.stats['scores']) / len(self.stats['scores']) if self.stats['scores'] else 0
|
417 |
avg_distance = sum(self.stats['distances']) / len(self.stats['distances']) if self.stats['distances'] else 0
|
418 |
+
avg_country_accuracy = (0 if self.df['country_val'].iloc[:i+1].sum() == 0 else sum(self.stats['country'])/self.df['country_val'].iloc[:i+1].sum())*100
|
419 |
if all:
|
420 |
+
avg_city_accuracy = (0 if self.df['city_val'].iloc[:i+1].sum() == 0 else sum(self.stats['city'])/self.df['city_val'].iloc[:i+1].sum())*100
|
421 |
+
avg_area_accuracy = (0 if self.df['area_val'].iloc[:i+1].sum() == 0 else sum(self.stats['area'])/self.df['area_val'].iloc[:i+1].sum())*100
|
422 |
+
avg_region_accuracy = (0 if self.df['region_val'].iloc[:i+1].sum() == 0 else sum(self.stats['region'])/self.df['region_val'].iloc[:i+1].sum())*100
|
423 |
aux = [avg_city_accuracy, avg_area_accuracy, avg_region_accuracy]
|
424 |
which = 'You'
|
425 |
elif which == 'base':
|
426 |
+
avg_score = np.mean(self.df[['score_base']].iloc[:i+1])
|
427 |
+
avg_distance = np.mean(self.df[['distance_base']].iloc[:i+1])
|
428 |
avg_country_accuracy = self.df['accuracy_country_base'].iloc[i]
|
429 |
if all:
|
430 |
aux = [self.df['accuracy_city_base'].iloc[i], self.df['accuracy_area_base'].iloc[i], self.df['accuracy_region_base'].iloc[i]]
|
431 |
which = 'Baseline-AI'
|
432 |
elif which == 'best':
|
433 |
+
avg_score = np.mean(self.df[['score']].iloc[:i+1])
|
434 |
+
avg_distance = np.mean(self.df[['distance']].iloc[:i+1])
|
435 |
avg_country_accuracy = self.df['accuracy_country'].iloc[i]
|
436 |
if all:
|
437 |
aux = [self.df['accuracy_city_base'].iloc[i], self.df['accuracy_area_base'].iloc[i], self.df['accuracy_region_base'].iloc[i]]
|