Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -393,13 +393,14 @@ class Engine(object):
|
|
393 |
|
394 |
df = pd.DataFrame([self.get_model_average(who) for who in ['user', 'best', 'base']], columns=['who', 'GeoScore', 'Distance', 'Accuracy (country)']).round(2)
|
395 |
result_text = (
|
396 |
-
f"### GeoScore: <span style='color:blue'
|
397 |
round(score, 2),
|
398 |
-
round(self.df['score'].iloc[self.index+1], 2),
|
399 |
round(distance, 2),
|
|
|
400 |
round(self.df['distance'].iloc[self.index+1], 2)
|
401 |
)
|
402 |
)
|
|
|
403 |
|
404 |
self.cache(self.index+1, score, distance, (click_lat, click_lon), time_elapsed)
|
405 |
return self.get_figure(), result_text, df
|
@@ -427,14 +428,14 @@ class Engine(object):
|
|
427 |
avg_country_accuracy = self.df['accuracy_country_base'].iloc[i]
|
428 |
if all:
|
429 |
aux = [self.df['accuracy_city_base'].iloc[i], self.df['accuracy_area_base'].iloc[i], self.df['accuracy_region_base'].iloc[i]]
|
430 |
-
which = '
|
431 |
elif which == 'best':
|
432 |
avg_score = np.mean(self.df[['score']].iloc[:i])
|
433 |
avg_distance = np.mean(self.df[['distance']].iloc[:i])
|
434 |
avg_country_accuracy = self.df['accuracy_country'].iloc[i]
|
435 |
if all:
|
436 |
aux = [self.df['accuracy_city_base'].iloc[i], self.df['accuracy_area_base'].iloc[i], self.df['accuracy_region_base'].iloc[i]]
|
437 |
-
which = '
|
438 |
return [which, avg_score, avg_distance, avg_country_accuracy] + aux
|
439 |
|
440 |
def update_average_display(self):
|
@@ -474,7 +475,7 @@ if __name__ == "__main__":
|
|
474 |
import gradio as gr
|
475 |
def click(state, coords):
|
476 |
if coords == '-1' or state['clicked']:
|
477 |
-
return gr.update(), gr.update(), gr.update(), gr.update()
|
478 |
lat, lon, country = coords.split(',')
|
479 |
state['clicked'] = True
|
480 |
image, text, df = state['engine'].click(float(lon), float(lat), country)
|
@@ -502,7 +503,7 @@ if __name__ == "__main__":
|
|
502 |
kargs = {}
|
503 |
if not MPL:
|
504 |
kargs = {'value': empty_map()}
|
505 |
-
return gr.update(value=make_map_(), visible=True), gr.update(visible=False, **kargs), gr.update(value=image), gr.update(value=text, visible=True), gr.update(visible=
|
506 |
else:
|
507 |
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
508 |
|
|
|
393 |
|
394 |
df = pd.DataFrame([self.get_model_average(who) for who in ['user', 'best', 'base']], columns=['who', 'GeoScore', 'Distance', 'Accuracy (country)']).round(2)
|
395 |
result_text = (
|
396 |
+
f"### GeoScore: <span style='color:blue'><emph>You</emph>GeoScore: %s, Distance: %s km</span> <span style='color:green'>GeoScore: %s, Distance: %s km</span>" % (
|
397 |
round(score, 2),
|
|
|
398 |
round(distance, 2),
|
399 |
+
round(self.df['score'].iloc[self.index+1], 2),
|
400 |
round(self.df['distance'].iloc[self.index+1], 2)
|
401 |
)
|
402 |
)
|
403 |
+
# You: } \green{OSV-Bot: GeoScore: XX, distance: XX
|
404 |
|
405 |
self.cache(self.index+1, score, distance, (click_lat, click_lon), time_elapsed)
|
406 |
return self.get_figure(), result_text, df
|
|
|
428 |
avg_country_accuracy = self.df['accuracy_country_base'].iloc[i]
|
429 |
if all:
|
430 |
aux = [self.df['accuracy_city_base'].iloc[i], self.df['accuracy_area_base'].iloc[i], self.df['accuracy_region_base'].iloc[i]]
|
431 |
+
which = 'Baseline-AI'
|
432 |
elif which == 'best':
|
433 |
avg_score = np.mean(self.df[['score']].iloc[:i])
|
434 |
avg_distance = np.mean(self.df[['distance']].iloc[:i])
|
435 |
avg_country_accuracy = self.df['accuracy_country'].iloc[i]
|
436 |
if all:
|
437 |
aux = [self.df['accuracy_city_base'].iloc[i], self.df['accuracy_area_base'].iloc[i], self.df['accuracy_region_base'].iloc[i]]
|
438 |
+
which = 'Plonk-AI'
|
439 |
return [which, avg_score, avg_distance, avg_country_accuracy] + aux
|
440 |
|
441 |
def update_average_display(self):
|
|
|
475 |
import gradio as gr
|
476 |
def click(state, coords):
|
477 |
if coords == '-1' or state['clicked']:
|
478 |
+
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
479 |
lat, lon, country = coords.split(',')
|
480 |
state['clicked'] = True
|
481 |
image, text, df = state['engine'].click(float(lon), float(lat), country)
|
|
|
503 |
kargs = {}
|
504 |
if not MPL:
|
505 |
kargs = {'value': empty_map()}
|
506 |
+
return gr.update(value=make_map_(), visible=True), gr.update(visible=False, **kargs), gr.update(value=image), gr.update(value=text, visible=True), gr.update(value='', visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(value="-1"), gr.update(), gr.update(), gr.update(visible=True)
|
507 |
else:
|
508 |
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
509 |
|