Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
import argparse | |
import re | |
import os | |
import streamlit as st | |
import random | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import tokenizers | |
#os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
random.seed(None) | |
suggested_text_list = ['ืืื, '] | |
def load_model(model_name): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
return model, tokenizer | |
def extend(input_text, max_size=20, top_k=50, top_p=0.95): | |
if len(input_text) == 0: | |
input_text = "" | |
encoded_prompt = tokenizer.encode( | |
input_text, add_special_tokens=False, return_tensors="pt") | |
encoded_prompt = encoded_prompt.to(device) | |
if encoded_prompt.size()[-1] == 0: | |
input_ids = None | |
else: | |
input_ids = encoded_prompt | |
output_sequences = model.generate( | |
input_ids=input_ids, | |
max_length=max_size + len(encoded_prompt[0]), | |
top_k=top_k, | |
top_p=top_p, | |
do_sample=True, | |
repetition_penalty=25.0, | |
num_return_sequences=1) | |
# Remove the batch dimension when returning multiple sequences | |
if len(output_sequences.shape) > 2: | |
output_sequences.squeeze_() | |
generated_sequences = [] | |
for generated_sequence_idx, generated_sequence in enumerate(output_sequences): | |
generated_sequence = generated_sequence.tolist() | |
# Decode text | |
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) | |
# Remove all text after the stop token | |
text = text[: text.find(stop_token) if stop_token else None] | |
# Remove all text after 3 newlines | |
text = text[: text.find(new_lines) if new_lines else None] | |
# Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing | |
total_sequence = ( | |
input_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :] | |
) | |
generated_sequences.append(total_sequence) | |
parsed_text = total_sequence.replace("<|startoftext|>", "").replace("\r","").replace("\n\n", "\n") | |
if len(parsed_text) == 0: | |
parsed_text = "ืฉืืืื" | |
return parsed_text | |
if __name__ == "__main__": | |
st.title("Light generator") | |
pre_model_path = "orendar/light_generator" | |
model, tokenizer = load_model(pre_model_path) | |
stop_token = "<|endoftext|>" | |
new_lines = "\n\n\n" | |
np.random.seed(None) | |
random_seed = np.random.randint(10000,size=1) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count() | |
torch.manual_seed(random_seed) | |
if n_gpu > 0: | |
torch.cuda.manual_seed_all(random_seed) | |
model.to(device) | |
text_area = st.text_area("Enter the first few words (or leave blank), tap on \"Generate Text\" below. Tapping again will produce a different result.", 'ืืื, ') | |
st.sidebar.subheader("Configurable parameters") | |
max_len = st.sidebar.slider("Max-Length", 0, 256, 192,help="The maximum length of the sequence to be generated.") | |
top_k = st.sidebar.slider("Top-K", 0, 100, 40, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.") | |
top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 0.92, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.") | |
if st.button("Generate Text"): | |
with st.spinner(text="Generating results..."): | |
st.subheader("Result") | |
print(f"device:{device}, n_gpu:{n_gpu}, random_seed:{random_seed}, maxlen:{max_len}, top_k:{top_k}, top_p:{top_p}") | |
if len(text_area.strip()) == 0: | |
text_area = random.choice(suggested_text_list) | |
result = extend(input_text=text_area, | |
max_size=int(max_len), | |
top_k=int(top_k), | |
top_p=float(top_p)) | |
print("Done length: " + str(len(result)) + " bytes") | |
#<div class="rtl" dir="rtl" style="text-align:right;"> | |
st.markdown(f"<p dir=\"rtl\" style=\"text-align:right;\"> {result} </p>", unsafe_allow_html=True) | |
st.write("\n\nResult length: " + str(len(result)) + " bytes") | |
print(f"\"{result}\"") | |
st.markdown( | |
"""This model was trained on archive materials.""" | |
) | |
st.markdown("<footer><hr><p style=\"font-size:14px\">Enjoy the light.</p><p style=\"font-size:12px\">Created by Oren Dar. Many thanks to Norod78 for providing the base model and the Spaces example!</a></p></footer> ", unsafe_allow_html=True) |