Update app.py
Browse files
app.py
CHANGED
@@ -161,6 +161,7 @@ def randomize_loras(selected_indices):
|
|
161 |
|
162 |
@spaces.GPU(duration=70)
|
163 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
|
|
164 |
pipe.to("cuda")
|
165 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
166 |
with calculateDuration("Generating image"):
|
@@ -180,8 +181,8 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
|
180 |
|
181 |
@spaces.GPU(duration=70)
|
182 |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
183 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
184 |
pipe_i2i.to("cuda")
|
|
|
185 |
image_input = load_image(image_input_path)
|
186 |
final_image = pipe_i2i(
|
187 |
prompt=prompt_mash,
|
@@ -238,6 +239,7 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
238 |
pipe.load_lora_weights(lora_path, weight_name=lora["weights"], low_cpu_mem_usage=True, adapter_name=lora_name)
|
239 |
else:
|
240 |
pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
|
|
|
241 |
if image_input is not None:
|
242 |
pipe_i2i.set_adapters(lora_names, adapter_weights=[lora_scale_1, lora_scale_2])
|
243 |
else:
|
|
|
161 |
|
162 |
@spaces.GPU(duration=70)
|
163 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
164 |
+
print("Entrou aqui!")
|
165 |
pipe.to("cuda")
|
166 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
167 |
with calculateDuration("Generating image"):
|
|
|
181 |
|
182 |
@spaces.GPU(duration=70)
|
183 |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
|
|
184 |
pipe_i2i.to("cuda")
|
185 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
186 |
image_input = load_image(image_input_path)
|
187 |
final_image = pipe_i2i(
|
188 |
prompt=prompt_mash,
|
|
|
239 |
pipe.load_lora_weights(lora_path, weight_name=lora["weights"], low_cpu_mem_usage=True, adapter_name=lora_name)
|
240 |
else:
|
241 |
pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
|
242 |
+
print(lora_names)
|
243 |
if image_input is not None:
|
244 |
pipe_i2i.set_adapters(lora_names, adapter_weights=[lora_scale_1, lora_scale_2])
|
245 |
else:
|