CDM-Demo / app.py
wufan's picture
Upload 47 files
685cc58 verified
raw
history blame
15.4 kB
import sys
import os
import re
import json
import time
import shutil
import numpy as np
import gradio as gr
from datetime import datetime
from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool
from PIL import Image, ImageDraw
from skimage.measure import ransac
import matplotlib.pyplot as plt
from modules.latex2bbox_color import latex2bbox_color
from modules.tokenize_latex.tokenize_latex import tokenize_latex
from modules.visual_matcher import HungarianMatcher, SimpleAffineTransform
DATA_ROOT = "output"
def gen_color_list(num=10, gap=15):
num += 1
single_num = 255 // gap + 1
max_num = single_num ** 3
num = min(num, max_num)
color_list = []
for idx in range(num):
R = idx // single_num**2
GB = idx % single_num**2
G = GB // single_num
B = GB % single_num
color_list.append((R*gap, G*gap, B*gap))
return color_list[1:]
def process_latex(groundtruths, predictions, user_id="test"):
data_root = DATA_ROOT
temp_dir = os.path.join(data_root, "temp_dir")
data_root = os.path.join(data_root, user_id)
output_dir_info = {}
input_args = []
for subset, latex_list in zip(['gt', 'pred'], [groundtruths, predictions]):
sub_temp_dir = os.path.join(temp_dir, f"{user_id}_{subset}")
os.makedirs(sub_temp_dir, exist_ok=True)
output_path = os.path.join(data_root, subset)
output_dir_info[output_path] = []
os.makedirs(os.path.join(output_path, 'bbox'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'vis'), exist_ok=True)
total_color_list = gen_color_list(num=5800)
for idx, latex in enumerate(latex_list):
basename = f"sample_{idx}"
input_arg = latex, basename, output_path, sub_temp_dir, total_color_list
a = time.time()
latex2bbox_color(input_arg)
b = time.time()
for subset in ['gt', 'pred']:
shutil.rmtree(os.path.join(temp_dir, f"{user_id}_{subset}"))
def update_inliers(ori_inliers, sub_inliers):
inliers = np.copy(ori_inliers)
sub_idx = -1
for idx in range(len(ori_inliers)):
if ori_inliers[idx] == False:
sub_idx += 1
if sub_inliers[sub_idx] == True:
inliers[idx] = True
return inliers
def reshape_inliers(ori_inliers, sub_inliers):
inliers = np.copy(ori_inliers)
sub_idx = -1
for idx in range(len(ori_inliers)):
if ori_inliers[idx] == False:
sub_idx += 1
if sub_inliers[sub_idx] == True:
inliers[idx] = True
else:
inliers[idx] = False
return inliers
def evaluation(user_id="test"):
data_root = DATA_ROOT
data_root = os.path.join(data_root, user_id)
gt_box_dir = os.path.join(data_root, "gt")
pred_box_dir = os.path.join(data_root, "pred")
match_vis_dir = os.path.join(data_root, "vis_match")
os.makedirs(match_vis_dir, exist_ok=True)
max_iter = 3
min_samples = 3
residual_threshold = 25
max_trials = 50
metrics_per_img = {}
gt_basename_list = [item.split(".")[0] for item in os.listdir(os.path.join(gt_box_dir, 'bbox'))]
for basename in gt_basename_list:
gt_valid, pred_valid = True, True
if not os.path.exists(os.path.join(gt_box_dir, 'bbox', basename+".jsonl")):
gt_valid = False
else:
with open(os.path.join(gt_box_dir, 'bbox', basename+".jsonl"), 'r') as f:
box_gt = []
for line in f:
info = json.loads(line)
if info['bbox']:
box_gt.append(info)
if not box_gt:
gt_valid = False
if not gt_valid:
continue
if not os.path.exists(os.path.join(pred_box_dir, 'bbox', basename+".jsonl")):
pred_valid = False
else:
with open(os.path.join(pred_box_dir, 'bbox', basename+".jsonl"), 'r') as f:
box_pred = []
for line in f:
info = json.loads(line)
if info['bbox']:
box_pred.append(info)
if not box_pred:
pred_valid = False
if not pred_valid:
metrics_per_img[basename] = {
"recall": 0,
"precision": 0,
"F1_score": 0,
}
continue
gt_img_path = os.path.join(gt_box_dir, 'vis', basename+"_base.png")
pred_img_path = os.path.join(pred_box_dir, 'vis', basename+"_base.png")
img_gt = Image.open(gt_img_path)
img_pred = Image.open(pred_img_path)
matcher = HungarianMatcher()
matched_idxes = matcher(box_gt, box_pred, img_gt.size, img_pred.size)
src = []
dst = []
for (idx1, idx2) in matched_idxes:
x1min, y1min, x1max, y1max = box_gt[idx1]['bbox']
x2min, y2min, x2max, y2max = box_pred[idx2]['bbox']
x1_c, y1_c = float((x1min+x1max)/2), float((y1min+y1max)/2)
x2_c, y2_c = float((x2min+x2max)/2), float((y2min+y2max)/2)
src.append([y1_c, x1_c])
dst.append([y2_c, x2_c])
src = np.array(src)
dst = np.array(dst)
if src.shape[0] <= min_samples:
inliers = np.array([True for _ in matched_idxes])
else:
inliers = np.array([False for _ in matched_idxes])
for i in range(max_iter):
if src[inliers==False].shape[0] <= min_samples:
break
model, inliers_1 = ransac((src[inliers==False], dst[inliers==False]), SimpleAffineTransform, min_samples=min_samples, residual_threshold=residual_threshold, max_trials=max_trials)
if inliers_1 is not None and inliers_1.any():
inliers = update_inliers(inliers, inliers_1)
else:
break
if len(inliers[inliers==True]) >= len(matched_idxes):
break
for idx, (a,b) in enumerate(matched_idxes):
if inliers[idx] == True and matcher.cost['token'][a, b] == 1:
inliers[idx] = False
final_match_num = len(inliers[inliers==True])
recall = round(final_match_num/(len(box_gt)), 3)
precision = round(final_match_num/(len(box_pred)), 3)
F1_score = round(2*final_match_num/(len(box_gt)+len(box_pred)), 3)
metrics_per_img[basename] = {
"recall": recall,
"precision": precision,
"F1_score": F1_score,
}
if True:
gap = 5
W1, H1 = img_gt.size
W2, H2 = img_pred.size
H = H1 + H2 + gap
W = max(W1, W2)
vis_img = Image.new('RGB', (W, H), (255, 255, 255))
vis_img.paste(img_gt, (0, 0))
vis_img.paste(Image.new('RGB', (W, gap), (0, 150, 200)), (0, H1))
vis_img.paste(img_pred, (0, H1+gap))
match_img = vis_img.copy()
match_draw = ImageDraw.Draw(match_img)
gt_matched_idx = {
a: flag
for (a,b), flag in
zip(matched_idxes, inliers)
}
pred_matched_idx = {
b: flag
for (a,b), flag in
zip(matched_idxes, inliers)
}
for idx, box in enumerate(box_gt):
if idx in gt_matched_idx and gt_matched_idx[idx]==True:
color = "green"
else:
color = "red"
x_min, y_min, x_max, y_max = box['bbox']
match_draw.rectangle([x_min-1, y_min-1, x_max+1, y_max+1], fill=None, outline=color, width=2)
for idx, box in enumerate(box_pred):
if idx in pred_matched_idx and pred_matched_idx[idx]==True:
color = "green"
else:
color = "red"
x_min, y_min, x_max, y_max = box['bbox']
match_draw.rectangle([x_min-1, y_min-1+H1+gap, x_max+1, y_max+1+H1+gap], fill=None, outline=color, width=2)
vis_img.save(os.path.join(match_vis_dir, basename+"_base.png"))
if W < 500:
padding = (500 - W)//2 + 1
reshape_match_img = Image.new('RGB', (500, H), (255, 255, 255))
reshape_match_img.paste(match_img, (padding, 0))
reshape_match_img.paste(Image.new('RGB', (500, gap), (0, 150, 200)), (0, H1))
reshape_match_img.save(os.path.join(match_vis_dir, basename+".png"))
else:
match_img.save(os.path.join(match_vis_dir, basename+".png"))
acc_list = [val['F1_score'] for _, val in metrics_per_img.items()]
metrics_res = {
"mean_score": round(np.mean(acc_list), 3),
"details": metrics_per_img
}
metric_res_path = os.path.join(data_root, "metrics_res.json")
with open(metric_res_path, "w") as f:
f.write(json.dumps(metrics_res, indent=2))
return metrics_res, metric_res_path, match_vis_dir
def calculate_metric_single(groundtruth, prediction):
user_id = datetime.now().strftime('%Y%m%d-%H%M%S')
process_latex([groundtruth], [prediction], user_id)
metrics_res, metric_res_path, match_vis_dir = evaluation(user_id)
basename = "sample_0"
image_path = os.path.join(match_vis_dir, basename+".png")
sample = metrics_res["details"][basename]
score = sample['F1_score']
recall = sample['recall']
precision = sample['precision']
return score, recall, precision, gr.Image(image_path)
def calculate_metric_batch(json_input):
user_id = datetime.now().strftime('%Y%m%d-%H%M%S')
with open(json_input.name, "r") as f:
input_data = json.load(f)
groundtruths = []
predictions = []
for item in input_data:
groundtruths.append(item['gt'])
predictions.append(item['pred'])
process_latex(groundtruths, predictions, user_id)
metrics_res, metric_res_path, match_vis_dir = evaluation(user_id)
return metric_res_path
def gradio_reset_single():
return gr.update(value=None, placeholder='type gt latex code here'), gr.update(value=None, placeholder='type pred latex code here'), \
gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)
def gradio_reset_batch():
return gr.update(value=None), gr.update(value=None)
def select_example1():
gt = "y = 2x + 3z"
pred = "y = 2z + 3x"
return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here')
def select_example2():
gt = "r = \\frac { \\alpha } { \\beta } \\vert \\sin \\beta \\left( \\sigma _ { 1 } \\pm \\sigma _ { 2 } \\right) \\vert"
pred = "r={\\frac{\\alpha}{\\beta}}|\\sin\\beta\\left(\\sigma_{2}+\\sigma_{1}\\right)|"
return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here')
def select_example3():
gt = "\\begin{array} { r l r } & { } & { \\mathbf { J } _ { L } = \\left( \\begin{array} { c c } { 0 } & { 0 } \\\\ { v _ { n } } & { 0 } \\end{array} \\right) , ~ \\mathbf { J } _ { R } = \\left( \\begin{array} { c c } { u _ { n - 1 } } & { 0 } \\\\ { 0 } & { 0 } \\end{array} \\right) , ~ } \\\\ & { } & {\\mathbf { K } = \\left( \\begin{array} { c c } { V _ { n - 1 } } & { u _ { n } } \\\\ { v _ { n - 1 } } & { V _ { n } } \\end{array} \\right) , } \\end{array}"
pred = "\\mathbf{J}_{U}={\\left(\\begin{array}{l l}{0}&{0}\\\\ {v_{n}}&{0}\\end{array}\\right)}\\,,\\ \\mathbf{J}_{R}={\\left(\\begin{array}{l l}{u_{n-1}}&{0}\\\\ {0}&{0}\\end{array}\\right)}\\,,\\mathbf{K}={\\left(\\begin{array}{l l}{V_{n-1}}&{u_{n}}\\\\ {v_{n-1}}&{V_{n}}\\end{array}\\right)}\\,,"
return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here')
if __name__ == "__main__":
title = """<h1 align="center">CDM: A Reliable Metric for Fair and Accurate Formula Recognition Evaluation</h1>"""
with gr.Blocks() as demo:
gr.Markdown(title)
# gr.Button(value="Quick Try: type latex code of gt and pred, get metrics and visualization.", interactive=False, variant="primary")
with gr.Row():
with gr.Column():
gt_input = gr.Textbox(label='gt', placeholder='type gt latex code here', interactive=True)
pred_input = gr.Textbox(label='pred', placeholder='type pred latex code here', interactive=True)
with gr.Row():
clear_single = gr.Button("Clear")
submit_single = gr.Button(value="Submit", interactive=True, variant="primary")
with gr.Accordion("Examples:"):
with gr.Row():
example1 = gr.Button("Example A(short)")
example2 = gr.Button("Example B(middle)")
example3 = gr.Button("Example C(long)")
with gr.Column():
with gr.Row():
score_output = gr.Number(label="F1 Score", interactive=False)
recall_output = gr.Number(label="Recall", interactive=False)
recision_output = gr.Number(label="Precision", interactive=False)
gr.Button(value="Visualization (green bbox means correcttlly matched, red bbox means missed or wrong.)", interactive=False)
vis_output = gr.Image(label=" ", interactive=False)
example1.click(select_example1, inputs=None, outputs=[gt_input, pred_input])
example2.click(select_example2, inputs=None, outputs=[gt_input, pred_input])
example3.click(select_example3, inputs=None, outputs=[gt_input, pred_input])
clear_single.click(gradio_reset_single, inputs=None, outputs=[gt_input, pred_input, score_output, recall_output, recision_output, vis_output])
submit_single.click(calculate_metric_single, inputs=[gt_input, pred_input], outputs=[score_output, recall_output, recision_output, vis_output])
# gr.Button(value="Batch Run: upload a json file and batch processing, this may take some times according to your latex amount and length.", interactive=False, variant="primary")
# with gr.Row():
# with gr.Column():
# json_input = gr.File(label="Input Json", file_types=[".json"])
# json_example = gr.File(label="Input Example", value="assets/example/input_example.json")
# with gr.Row():
# clear_batch = gr.Button("Clear")
# submit_batch = gr.Button(value="Submit", interactive=True, variant="primary")
# metric_output = gr.File(label="Output Metrics")
# clear_batch.click(gradio_reset_batch, inputs=None, outputs=[json_input, metric_output])
# submit_batch.click(calculate_metric_batch, inputs=[json_input], outputs=[metric_output])
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)