KlaudiaTH
Release version of leaderboard implementation
2b62c4c
raw
history blame
7.81 kB
import itertools
import os
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
from datasets import load_dataset
import style
TAB_STATE = 0 # FIXME
GSM8K_TASK_GROUP_NAME = "GSM8K" # FIXME
def init():
global repo_id, config_name, split_name, hidden_df, task_group_names_list, task_group_type_dict, task_groups_shots_dict, languages_list, model_type_dict
repo_id = os.getenv("OGX_LEADERBOARD_DATASET_NAME")
config_name = os.getenv("OGX_LEADERBOARD_DATASET_CONFIG")
split_name = os.getenv("OGX_LEADERBOARD_DATASET_SPLIT")
dataset = load_dataset(repo_id, config_name, split=split_name)
hidden_df = dataset.to_pandas()
task_group_names_list = hidden_df["Task_Group"].unique().tolist()
task_group_type_df = hidden_df[["Task_Group", "Task_Type"]].drop_duplicates()
task_group_type_dict = task_group_type_df.set_index("Task_Group")["Task_Type"].to_dict()
task_groups_shots_df = hidden_df[hidden_df["Few_Shot"] == True][["Task_Group", "Number_Shots"]].drop_duplicates()
task_groups_shots_dict = task_groups_shots_df.set_index("Task_Group")["Number_Shots"].to_dict()
languages_list = hidden_df["Language"].drop_duplicates().str.upper().tolist()
model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()
hidden_df = hidden_df.pivot_table(
columns=["Task_Group", "Few_Shot", "Language"],
index=["Model_Name"],
values="Value",
dropna=False,
).reset_index(inplace=False)
hidden_df["Type"] = hidden_df["Model_Name"].apply(lambda x: style.T_SYMBOLS[model_type_dict[x]])
def sort_cols(df: pd.DataFrame, fewshot: bool = False) -> pd.DataFrame:
task_cols = get_task_columns(df)
if fewshot:
renamer = {col: f"{col} ({task_groups_shots_dict[col]}-shot)" for col in task_cols if col in task_groups_shots_dict}
df.rename(columns=renamer, inplace=True)
task_cols = renamer.values()
return df.reindex(["Type", "Model_Name", "Average"] + sorted(task_cols), axis=1)
def get_task_columns(df: pd.DataFrame) -> pd.DataFrame:
l = list(df.columns)
l.remove("Model_Name")
l.remove("Average")
l.remove("Type")
return l
def get_models(df: pd.DataFrame) -> pd.DataFrame:
return df["Model_Name"].unique()
def filter_type(df: pd.DataFrame, model_types: list[str]) -> pd.DataFrame:
"""Keep only rows for which model type is in list of types"""
return df[df["Type"].isin(model_types)]
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
"""Keep only rows for which model name matches search query"""
query = query.replace(";", "|")
return df[df["Model_Name"].str.contains(query, case=False)]
def aggregate_langs(df: pd.DataFrame, tasks: list, langs: list):
"""Aggregates results over langs for each task in tasks.
If a language does not exist for a task, the aggregate for
that task will be shown as NaN.
"""
langs_lower = [item.lower() for item in langs]
df.columns = ["_".join(filter(None, col)) for col in df.columns]
colset = set(df.columns)
for t in tasks:
cols = [(f"{a}_{b}") for a, b in itertools.product([t], langs_lower)]
if set(cols).issubset(colset):
df.loc[:, t] = df[cols].mean(axis=1, skipna=False)
else:
df.loc[:, t] = np.nan
df.loc[:, "Average"] = df[tasks].mean(axis=1)
return df[["Type", "Model_Name", "Average"] + tasks]
def select_shots(df: pd.DataFrame, fewshot: bool = False):
cols = [col for col in df.columns if col[1] == fewshot] + []
# Move model name and type icon to the end
cols.append(("Model_Name", "", ""))
cols.append(("Type", "", ""))
return df[cols].droplevel(level=1, axis="columns")
def update_df(
tasks: list[str],
model_query: str,
langs: list[str],
model_types: list[str],
fewshot: bool = False,
format: bool = True,
) -> pd.DataFrame:
"""Return a filtered dataframe according to selected models, tasks and
languages. The format flag controls whether the output dataframe should
be formatted to tw significant figures.
"""
# keep only selected shots
df = select_shots(hidden_df, fewshot)
# aggregate results over languages per task
df = aggregate_langs(df, tasks, langs)
# filter models by search bar and model type
df = search_model(df, model_query)
df = filter_type(df, model_types)
if format:
return sort_cols(df, fewshot).style.format(precision=2, decimal=".")
else:
return sort_cols(df, fewshot)
def make_plot(df: pd.DataFrame):
df.columns = df.loc["Model_Name"]
df = df.drop("Model_Name")
df = df.reset_index(names="task")
if len(df.columns) > 2:
fig = px.line(data_frame=df, x="task", y=df.columns, markers=True, width=1200)
else:
fig = px.bar(data_frame=df, x="task", y=df.columns[-1], width=1200)
fig.update_xaxes(type="category")
return fig
def update_plot(
tasks: list[str],
model_query: str,
langs: list[str],
model_types: list[str],
fewshot: bool = False,
):
df = update_df(tasks, model_query, langs, model_types, fewshot, False).transpose()
plot = make_plot(df)
return plot
def fix_zeroshot(tasks: list[str | int | float], fewshot: bool = False):
global TAB_STATE
selected_task_type = get_selected_task_type(TAB_STATE)
choices = task_groups_with_task_type(selected_task_type)
if not fewshot:
try:
choices.remove(GSM8K_TASK_GROUP_NAME)
except ValueError:
pass
value = [v for v in tasks if v in choices]
else:
if TAB_STATE == 0:
value = [v for v in tasks if v in choices] + [GSM8K_TASK_GROUP_NAME]
elif TAB_STATE == 1:
value = [v for v in tasks if v in choices]
shown_tasks = gr.CheckboxGroup(
choices=choices,
value=value,
label="Select tasks to show",
elem_id="column-select",
interactive=True,
scale=50,
)
return shown_tasks
def update_tab_tasks(id: int, fewshot: bool = False):
# when the tab is changed, update the TAB_STATE accordingly
global TAB_STATE
TAB_STATE = id
selected_task_type = get_selected_task_type(TAB_STATE)
choices = task_groups_with_task_type(selected_task_type)
if not fewshot:
try:
choices.remove(GSM8K_TASK_GROUP_NAME)
except ValueError:
pass
values = choices.copy()
shown_tasks = gr.CheckboxGroup(
choices=choices,
value=values,
label="Select tasks to show",
elem_id="column-select",
interactive=True,
scale=50,
)
if id == 0:
# switching to accuracy tab, default to fewshot
fewshot = gr.Radio(
choices=[("0-Shot", False), ("Few-shot", True)],
value=True,
label="Select evaluation type",
interactive=True,
scale=29,
)
elif id == 1:
# switching to translation tab, default to 0-shot and disable selection
fewshot = gr.Radio(
choices=[("0-Shot", False), ("Few-shot", True)],
value=False,
label="Select evaluation type",
interactive=False,
scale=29,
)
return [shown_tasks, fewshot]
def get_selected_task_type(task_type_id):
task_types = {0: "accuracy", 1: "misc"}
selected_task_type = task_types[task_type_id]
return selected_task_type
def task_groups_with_task_type(selected_task_type):
choices = [task_group_name for task_group_name, task_type in task_group_type_dict.items() if task_type == selected_task_type]
return choices
init()