|
import streamlit as st |
|
import pandas as pd |
|
from datasets import load_dataset |
|
from ast import literal_eval |
|
import altair as alt |
|
|
|
nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering" |
|
"translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering" |
|
] |
|
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"] |
|
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"] |
|
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"] |
|
tabular = ["tabular-clasification", "tabular-regression"] |
|
|
|
modalities = { |
|
"nlp": nlp_tasks, |
|
"audio": audio_tasks, |
|
"cv": cv_tasks, |
|
"multimodal": multimodal, |
|
"tabular": tabular, |
|
"rl": ["reinforcement-learning"] |
|
} |
|
|
|
def modality(row): |
|
pipeline = row["pipeline"] |
|
for modality, tasks in modalities.items(): |
|
if pipeline in tasks: |
|
return modality |
|
if type(pipeline) == "str": |
|
return "unk_modality" |
|
return None |
|
|
|
supported_revisions = ["27_09_22"] |
|
|
|
def process_dataset(version): |
|
|
|
dataset = load_dataset("open-source-metrics/model-repos-stats", revision=version) |
|
|
|
|
|
data = dataset["train"].to_pandas() |
|
|
|
|
|
data["modality"] = data.apply(modality, axis=1) |
|
|
|
|
|
data["length_bins"] = pd.cut(data["text_length"], [0, 200, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 20000, 50000]) |
|
|
|
return data |
|
|
|
base = st.selectbox( |
|
'What revision do you want to use', |
|
supported_revisions) |
|
data = process_dataset(base) |
|
|
|
total_samples = data.shape[0] |
|
st.metric(label="Total models", value=total_samples) |
|
|
|
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users"]) |
|
|
|
with tab1: |
|
st.header("Languages info") |
|
|
|
data.loc[data.languages == "False", 'languages'] = None |
|
data.loc[data.languages == {}, 'languages'] = None |
|
|
|
no_lang_count = data["languages"].isna().sum() |
|
data["languages"] = data["languages"].fillna('none') |
|
|
|
def make_list(row): |
|
languages = row["languages"] |
|
if languages == "none": |
|
return [] |
|
return literal_eval(languages) |
|
|
|
def language_count(row): |
|
languages = row["languages"] |
|
leng = len(languages) |
|
return leng |
|
|
|
data["languages"] = data.apply(make_list, axis=1) |
|
data["repos_count"] = data.apply(language_count, axis=1) |
|
|
|
models_with_langs = data[data["repos_count"] > 0] |
|
langs = models_with_langs["languages"].explode() |
|
langs = langs[langs != {}] |
|
total_langs = len(langs.unique()) |
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
st.metric(label="Language Specified", value=total_samples-no_lang_count) |
|
with col2: |
|
st.metric(label="No Language Specified", value=no_lang_count) |
|
with col3: |
|
st.metric(label="Total Unique Languages", value=total_langs) |
|
|
|
st.subheader("Distribution of languages per model repo") |
|
linguality = st.selectbox( |
|
'All or just Multilingual', |
|
["All", "Just Multilingual", "Three or more languages"]) |
|
|
|
filter = 0 |
|
if linguality == "Just Multilingual": |
|
filter = 1 |
|
elif linguality == "Three or more languages": |
|
filter = 2 |
|
|
|
models_with_langs = data[data["repos_count"] > filter] |
|
df1 = models_with_langs['repos_count'].value_counts() |
|
st.bar_chart(df1) |
|
|
|
st.subheader("Distribution of repos per language") |
|
linguality_2 = st.selectbox( |
|
'All or filtered', |
|
["All", "No English", "Remove top 10"]) |
|
|
|
filter = 0 |
|
if linguality_2 == "All": |
|
filter = 0 |
|
elif linguality_2 == "No English": |
|
filter = 1 |
|
else: |
|
filter = 2 |
|
|
|
models_with_langs = data[data["repos_count"] > 0] |
|
langs = models_with_langs["languages"].explode() |
|
langs = langs[langs != {}] |
|
|
|
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index() |
|
if filter == 1: |
|
d = d.iloc[1:] |
|
elif filter == 2: |
|
d = d.iloc[10:] |
|
|
|
|
|
d = d.iloc[:25] |
|
|
|
st.write(alt.Chart(d).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('language', sort=None) |
|
)) |
|
|
|
st.subheader("Raw Data") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.dataframe(df1) |
|
with col2: |
|
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index() |
|
st.dataframe(d) |
|
|
|
|
|
|
|
with tab2: |
|
st.header("License info") |
|
|
|
no_license_count = data["license"].isna().sum() |
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
st.metric(label="License Specified", value=total_samples-no_license_count) |
|
with col2: |
|
st.metric(label="No license Specified", value=no_license_count) |
|
with col3: |
|
st.metric(label="Total Unique Licenses", value=len(data["license"].unique())) |
|
|
|
st.subheader("Distribution of licenses per model repo") |
|
license_filter = st.selectbox( |
|
'All or filtered', |
|
["All", "No Apache 2.0", "Remove top 10"]) |
|
|
|
filter = 0 |
|
if license_filter == "All": |
|
filter = 0 |
|
elif license_filter == "No Apache 2.0": |
|
filter = 1 |
|
else: |
|
filter = 2 |
|
|
|
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index() |
|
if filter == 1: |
|
d = d.iloc[1:] |
|
elif filter == 2: |
|
d = d.iloc[10:] |
|
|
|
|
|
d = d.iloc[:25] |
|
|
|
st.write(alt.Chart(d).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('license', sort=None) |
|
)) |
|
st.text("There are some edge cases, as old repos using lists of licenses. We are working on fixing this.") |
|
|
|
|
|
st.subheader("Raw Data") |
|
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index() |
|
st.dataframe(d) |
|
|
|
with tab3: |
|
st.header("Pipeline info") |
|
|
|
no_pipeline_count = data["pipeline"].isna().sum() |
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
st.metric(label="Pipeline Specified", value=total_samples-no_pipeline_count) |
|
with col2: |
|
st.metric(label="No pipeline Specified", value=no_pipeline_count) |
|
with col3: |
|
st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique())) |
|
|
|
st.subheader("Distribution of pipelines per model repo") |
|
pipeline_filter = st.selectbox( |
|
'All or filtered', |
|
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"]) |
|
|
|
filter = 0 |
|
if pipeline_filter == "All": |
|
filter = 0 |
|
elif pipeline_filter == "NLP": |
|
filter = 1 |
|
elif pipeline_filter == "CV": |
|
filter = 2 |
|
elif pipeline_filter == "Audio": |
|
filter = 3 |
|
elif pipeline_filter == "RL": |
|
filter = 4 |
|
elif pipeline_filter == "Multimodal": |
|
filter = 5 |
|
elif pipeline_filter == "Tabular": |
|
filter = 6 |
|
|
|
d = data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index() |
|
|
|
st.write(alt.Chart(d).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('pipeline', sort=None) |
|
)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|