osanseviero
commited on
Commit
•
de86128
1
Parent(s):
ae554ae
Add language and license info
Browse files- README.md +1 -1
- models.py +259 -0
- requirements.txt +1 -0
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: indigo
|
|
5 |
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.10.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
---
|
11 |
|
|
|
5 |
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.10.0
|
8 |
+
app_file: models.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
models.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import load_dataset
|
4 |
+
from ast import literal_eval
|
5 |
+
import altair as alt
|
6 |
+
|
7 |
+
nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering"
|
8 |
+
"translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering"
|
9 |
+
]
|
10 |
+
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"]
|
11 |
+
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"]
|
12 |
+
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"]
|
13 |
+
tabular = ["tabular-clasification", "tabular-regression"]
|
14 |
+
|
15 |
+
modalities = {
|
16 |
+
"nlp": nlp_tasks,
|
17 |
+
"audio": audio_tasks,
|
18 |
+
"cv": cv_tasks,
|
19 |
+
"multimodal": multimodal,
|
20 |
+
"tabular": tabular,
|
21 |
+
"rl": ["reinforcement-learning"]
|
22 |
+
}
|
23 |
+
|
24 |
+
def modality(row):
|
25 |
+
pipeline = row["pipeline"]
|
26 |
+
for modality, tasks in modalities.items():
|
27 |
+
if pipeline in tasks:
|
28 |
+
return modality
|
29 |
+
if type(pipeline) == "str":
|
30 |
+
return "unk_modality"
|
31 |
+
return None
|
32 |
+
|
33 |
+
supported_revisions = ["27_09_22"]
|
34 |
+
|
35 |
+
def process_dataset(version):
|
36 |
+
# Load dataset at specified revision
|
37 |
+
dataset = load_dataset("open-source-metrics/model-repos-stats", revision=version)
|
38 |
+
|
39 |
+
# Convert to pandas dataframe
|
40 |
+
data = dataset["train"].to_pandas()
|
41 |
+
|
42 |
+
# Add modality column
|
43 |
+
data["modality"] = data.apply(modality, axis=1)
|
44 |
+
|
45 |
+
# Bin the model card length into some bins
|
46 |
+
data["length_bins"] = pd.cut(data["text_length"], [0, 200, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 20000, 50000])
|
47 |
+
|
48 |
+
return data
|
49 |
+
|
50 |
+
base = st.selectbox(
|
51 |
+
'What revision do you want to use',
|
52 |
+
supported_revisions)
|
53 |
+
data = process_dataset(base)
|
54 |
+
|
55 |
+
total_samples = data.shape[0]
|
56 |
+
st.metric(label="Total models", value=total_samples)
|
57 |
+
|
58 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users"])
|
59 |
+
|
60 |
+
with tab1:
|
61 |
+
st.header("Languages info")
|
62 |
+
|
63 |
+
data.loc[data.languages == "False", 'languages'] = None
|
64 |
+
data.loc[data.languages == {}, 'languages'] = None
|
65 |
+
|
66 |
+
no_lang_count = data["languages"].isna().sum()
|
67 |
+
data["languages"] = data["languages"].fillna('none')
|
68 |
+
|
69 |
+
def make_list(row):
|
70 |
+
languages = row["languages"]
|
71 |
+
if languages == "none":
|
72 |
+
return []
|
73 |
+
return literal_eval(languages)
|
74 |
+
|
75 |
+
def language_count(row):
|
76 |
+
languages = row["languages"]
|
77 |
+
leng = len(languages)
|
78 |
+
return leng
|
79 |
+
|
80 |
+
data["languages"] = data.apply(make_list, axis=1)
|
81 |
+
data["repos_count"] = data.apply(language_count, axis=1)
|
82 |
+
|
83 |
+
models_with_langs = data[data["repos_count"] > 0]
|
84 |
+
langs = models_with_langs["languages"].explode()
|
85 |
+
langs = langs[langs != {}]
|
86 |
+
total_langs = len(langs.unique())
|
87 |
+
|
88 |
+
col1, col2, col3 = st.columns(3)
|
89 |
+
with col1:
|
90 |
+
st.metric(label="Language Specified", value=total_samples-no_lang_count)
|
91 |
+
with col2:
|
92 |
+
st.metric(label="No Language Specified", value=no_lang_count)
|
93 |
+
with col3:
|
94 |
+
st.metric(label="Total Unique Languages", value=total_langs)
|
95 |
+
|
96 |
+
st.subheader("Distribution of languages per model repo")
|
97 |
+
linguality = st.selectbox(
|
98 |
+
'All or just Multilingual',
|
99 |
+
["All", "Just Multilingual", "Three or more languages"])
|
100 |
+
|
101 |
+
filter = 0
|
102 |
+
if linguality == "Just Multilingual":
|
103 |
+
filter = 1
|
104 |
+
elif linguality == "Three or more languages":
|
105 |
+
filter = 2
|
106 |
+
|
107 |
+
models_with_langs = data[data["repos_count"] > filter]
|
108 |
+
df1 = models_with_langs['repos_count'].value_counts()
|
109 |
+
st.bar_chart(df1)
|
110 |
+
|
111 |
+
st.subheader("Distribution of repos per language")
|
112 |
+
linguality_2 = st.selectbox(
|
113 |
+
'All or filtered',
|
114 |
+
["All", "No English", "Remove top 10"])
|
115 |
+
|
116 |
+
filter = 0
|
117 |
+
if linguality_2 == "All":
|
118 |
+
filter = 0
|
119 |
+
elif linguality_2 == "No English":
|
120 |
+
filter = 1
|
121 |
+
else:
|
122 |
+
filter = 2
|
123 |
+
|
124 |
+
models_with_langs = data[data["repos_count"] > 0]
|
125 |
+
langs = models_with_langs["languages"].explode()
|
126 |
+
langs = langs[langs != {}]
|
127 |
+
|
128 |
+
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
|
129 |
+
if filter == 1:
|
130 |
+
d = d.iloc[1:]
|
131 |
+
elif filter == 2:
|
132 |
+
d = d.iloc[10:]
|
133 |
+
|
134 |
+
# Just keep top 25 to avoid vertical scroll
|
135 |
+
d = d.iloc[:25]
|
136 |
+
|
137 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
138 |
+
x='counts',
|
139 |
+
y=alt.X('language', sort=None)
|
140 |
+
))
|
141 |
+
|
142 |
+
st.subheader("Raw Data")
|
143 |
+
col1, col2 = st.columns(2)
|
144 |
+
with col1:
|
145 |
+
st.dataframe(df1)
|
146 |
+
with col2:
|
147 |
+
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
|
148 |
+
st.dataframe(d)
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
with tab2:
|
153 |
+
st.header("License info")
|
154 |
+
|
155 |
+
no_license_count = data["license"].isna().sum()
|
156 |
+
col1, col2, col3 = st.columns(3)
|
157 |
+
with col1:
|
158 |
+
st.metric(label="License Specified", value=total_samples-no_license_count)
|
159 |
+
with col2:
|
160 |
+
st.metric(label="No license Specified", value=no_license_count)
|
161 |
+
with col3:
|
162 |
+
st.metric(label="Total Unique Licenses", value=len(data["license"].unique()))
|
163 |
+
|
164 |
+
st.subheader("Distribution of licenses per model repo")
|
165 |
+
license_filter = st.selectbox(
|
166 |
+
'All or filtered',
|
167 |
+
["All", "No Apache 2.0", "Remove top 10"])
|
168 |
+
|
169 |
+
filter = 0
|
170 |
+
if license_filter == "All":
|
171 |
+
filter = 0
|
172 |
+
elif license_filter == "No Apache 2.0":
|
173 |
+
filter = 1
|
174 |
+
else:
|
175 |
+
filter = 2
|
176 |
+
|
177 |
+
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
|
178 |
+
if filter == 1:
|
179 |
+
d = d.iloc[1:]
|
180 |
+
elif filter == 2:
|
181 |
+
d = d.iloc[10:]
|
182 |
+
|
183 |
+
# Just keep top 25 to avoid vertical scroll
|
184 |
+
d = d.iloc[:25]
|
185 |
+
|
186 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
187 |
+
x='counts',
|
188 |
+
y=alt.X('license', sort=None)
|
189 |
+
))
|
190 |
+
st.text("There are some edge cases, as old repos using lists of licenses. We are working on fixing this.")
|
191 |
+
|
192 |
+
|
193 |
+
st.subheader("Raw Data")
|
194 |
+
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
|
195 |
+
st.dataframe(d)
|
196 |
+
|
197 |
+
with tab3:
|
198 |
+
st.header("Pipeline info")
|
199 |
+
|
200 |
+
no_pipeline_count = data["pipeline"].isna().sum()
|
201 |
+
col1, col2, col3 = st.columns(3)
|
202 |
+
with col1:
|
203 |
+
st.metric(label="Pipeline Specified", value=total_samples-no_pipeline_count)
|
204 |
+
with col2:
|
205 |
+
st.metric(label="No pipeline Specified", value=no_pipeline_count)
|
206 |
+
with col3:
|
207 |
+
st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique()))
|
208 |
+
|
209 |
+
st.subheader("Distribution of pipelines per model repo")
|
210 |
+
pipeline_filter = st.selectbox(
|
211 |
+
'All or filtered',
|
212 |
+
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"])
|
213 |
+
|
214 |
+
filter = 0
|
215 |
+
if pipeline_filter == "All":
|
216 |
+
filter = 0
|
217 |
+
elif pipeline_filter == "NLP":
|
218 |
+
filter = 1
|
219 |
+
elif pipeline_filter == "CV":
|
220 |
+
filter = 2
|
221 |
+
elif pipeline_filter == "Audio":
|
222 |
+
filter = 3
|
223 |
+
elif pipeline_filter == "RL":
|
224 |
+
filter = 4
|
225 |
+
elif pipeline_filter == "Multimodal":
|
226 |
+
filter = 5
|
227 |
+
elif pipeline_filter == "Tabular":
|
228 |
+
filter = 6
|
229 |
+
|
230 |
+
d = data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index()
|
231 |
+
|
232 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
233 |
+
x='counts',
|
234 |
+
y=alt.X('pipeline', sort=None)
|
235 |
+
))
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
datasets
|