Clémentine
fix typo 2
7dd994f
raw
history blame
7.21 kB
import json
import os
from datetime import datetime, timezone
from huggingface_hub import ModelCard, snapshot_download
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_REPO, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
user_submission_permission,
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
private: bool,
weight_type: str,
model_type: str,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Is the user rate limited?
if user_name != "":
user_can_submit, error_msg = user_submission_permission(
user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
)
if not user_can_submit:
return styled_error(error_msg)
# Did the model authors forbid its submission to the leaderboard?
if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
architecture = "?"
downloads = 0
created_at = ""
if not weight_type == "Adapter":
model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
downloads = getattr(model_config, 'downloads', 0)
created_at = getattr(model_config, 'created_at', '')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
is_merge_from_metadata = False
is_moe_from_metadata = False
model_card = ModelCard.load(model)
# Storing the model tags
tags = []
if model_card.data.tags:
is_merge_from_metadata = "merge" in model_card.data.tags
is_moe_from_metadata = "moe" in model_card.data.tags
merge_keywords = ["mergekit", "merged model", "merge model", "merging"]
# If the model is a merge but not saying it in the metadata, we flag it
is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in merge_keywords)
if is_merge_from_model_card or is_merge_from_metadata:
tags.append("merge")
if not is_merge_from_metadata:
tags.append("flagged:undisclosed_merge")
moe_keywords = ["moe", "mixture of experts"]
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in moe_keywords)
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
tags.append("moe")
if not is_moe_from_metadata:
tags.append("flagged:undisclosed_moe")
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"private": private,
"precision": precision,
"params": model_size,
"architectures": architecture,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"job_id": -1,
"job_start_time": None,
}
supplementary_info = {
"likes": model_info.likes,
"license": license,
"still_on_hub": True,
"tags": tags,
"downloads": downloads,
"created_at": created_at
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# We want to grab the latest version of the submission file to not accidentally overwrite it
snapshot_download(
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
with open(DYNAMIC_INFO_FILE_PATH) as f:
all_supplementary_info = json.load(f)
all_supplementary_info[model] = supplementary_info
with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
json.dump(all_supplementary_info, f, indent=2)
API.upload_file(
path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
repo_id=DYNAMIC_INFO_REPO,
repo_type="dataset",
commit_message=f"Add {model} to dynamic info queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)