Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import os | |
import re | |
from collections import defaultdict | |
from datetime import datetime, timedelta, timezone | |
import huggingface_hub | |
from huggingface_hub import ModelCard | |
from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata | |
from transformers import AutoConfig, AutoTokenizer | |
from src.envs import HAS_HIGHER_RATE_LIMIT | |
# ht to @Wauplin, thank you for the snippet! | |
# See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317 | |
def check_model_card(repo_id: str) -> tuple[bool, str]: | |
# Returns operation status, and error message | |
try: | |
card = ModelCard.load(repo_id) | |
except huggingface_hub.utils.EntryNotFoundError: | |
return False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None | |
# Enforce license metadata | |
if card.data.license is None: | |
if not ("license_name" in card.data and "license_link" in card.data): | |
return False, ( | |
"License not found. Please add a license to your model card using the `license` metadata or a" | |
" `license_name`/`license_link` pair." | |
), None | |
# Enforce card content | |
if len(card.text) < 200: | |
return False, "Please add a description to your model card, it is too short.", None | |
return True, "", card | |
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str, AutoConfig]: | |
try: | |
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) #, force_download=True) | |
if test_tokenizer: | |
try: | |
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) | |
except ValueError as e: | |
return ( | |
False, | |
f"uses a tokenizer which is not in a transformers release: {e}", | |
None | |
) | |
except Exception as e: | |
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None) | |
return True, None, config | |
except ValueError as e: | |
return ( | |
False, | |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", | |
None | |
) | |
except Exception as e: | |
if "You are trying to access a gated repo." in str(e): | |
return True, "uses a gated model.", None | |
return False, "was not found on hub!", None | |
def get_model_size(model_info: ModelInfo, precision: str): | |
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)") | |
safetensors = None | |
try: | |
safetensors = get_safetensors_metadata(model_info.id) | |
except Exception as e: | |
print(e) | |
if safetensors is not None: | |
model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3) | |
else: | |
try: | |
size_match = re.search(size_pattern, model_info.id.lower()) | |
model_size = size_match.group(0) | |
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3) | |
except AttributeError as e: | |
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py | |
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1 | |
model_size = size_factor * model_size | |
return model_size | |
def get_model_arch(model_info: ModelInfo): | |
return model_info.config.get("architectures", "Unknown") | |
def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota): | |
if org_or_user not in users_to_submission_dates: | |
return True, "" | |
submission_dates = sorted(users_to_submission_dates[org_or_user]) | |
time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ") | |
submissions_after_timelimit = [d for d in submission_dates if d > time_limit] | |
num_models_submitted_in_period = len(submissions_after_timelimit) | |
if org_or_user in HAS_HIGHER_RATE_LIMIT: | |
rate_limit_quota = 2 * rate_limit_quota | |
if num_models_submitted_in_period > rate_limit_quota: | |
error_msg = f"Organisation or user `{org_or_user}`" | |
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard " | |
error_msg += f"in the last {rate_limit_period} days.\n" | |
error_msg += ( | |
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗" | |
) | |
return False, error_msg | |
return True, "" | |
def already_submitted_models(requested_models_dir: str) -> set[str]: | |
depth = 1 | |
file_names = [] | |
users_to_submission_dates = defaultdict(list) | |
for root, _, files in os.walk(requested_models_dir): | |
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) | |
if current_depth == depth: | |
for file in files: | |
if not file.endswith(".json"): | |
continue | |
with open(os.path.join(root, file), "r") as f: | |
info = json.load(f) | |
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}") | |
# Select organisation | |
if info["model"].count("/") == 0 or "submitted_time" not in info: | |
continue | |
organisation, _ = info["model"].split("/") | |
users_to_submission_dates[organisation].append(info["submitted_time"]) | |
return set(file_names), users_to_submission_dates | |
def get_model_tags(model_card, model: str): | |
is_merge_from_metadata = False | |
is_moe_from_metadata = False | |
tags = [] | |
if model_card is None: | |
return tags | |
if model_card.data.tags: | |
is_merge_from_metadata = any([tag in model_card.data.tags for tag in ["merge", "moerge", "mergekit", "lazymergekit"]]) | |
is_moe_from_metadata = any([tag in model_card.data.tags for tag in ["moe", "moerge"]]) | |
is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in ["merged model", "merge model", "moerge"]) | |
if is_merge_from_model_card or is_merge_from_metadata: | |
tags.append("merge") | |
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"]) | |
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-") | |
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata: | |
tags.append("moe") | |
return tags | |