alozowski
Bump up huggingface-hub to 0.26.0rc0
338fe76
raw
history blame
20 kB
import logging
import time
import schedule
import datetime
import gradio as gr
from threading import Thread
import datasets
from huggingface_hub import snapshot_download, WebhooksServer, WebhookPayload, RepoCard
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
# Start ephemeral Spaces on PRs (see config in README.md)
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
Precision,
WeightType,
fields,
EvalQueueColumn
)
from src.envs import (
API,
EVAL_REQUESTS_PATH,
AGGREGATED_REPO,
HF_TOKEN,
QUEUE_REPO,
REPO_ID,
VOTES_REPO,
VOTES_PATH,
HF_HOME,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.voting.vote_system import VoteManager, run_scheduler
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Start ephemeral Spaces on PRs (see config in README.md)
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
DO_FULL_INIT = True # os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
NEW_DATA_ON_LEADERBOARD = True
LEADERBOARD_DF = None
def restart_space():
logging.info(f"Restarting space with repo ID: {REPO_ID}")
try:
# Check if new data is pending and download if necessary
if NEW_DATA_ON_LEADERBOARD:
logging.info("Fetching latest leaderboard data before restart.")
get_latest_data_leaderboard()
# Now restart the space
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
logging.info("Space restarted successfully.")
except Exception as e:
logging.error(f"Failed to restart space: {e}")
def time_diff_wrapper(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
diff = end_time - start_time
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
return result
return wrapper
@time_diff_wrapper
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
"""Download dataset with exponential backoff retries."""
attempt = 0
while attempt < max_attempts:
try:
logging.info(f"Downloading {repo_id} to {local_dir}")
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
repo_type=repo_type,
tqdm_class=None,
etag_timeout=30,
max_workers=8,
)
logging.info("Download successful")
return
except Exception as e:
wait_time = backoff_factor**attempt
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
time.sleep(wait_time)
attempt += 1
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
def get_latest_data_leaderboard(leaderboard_initial_df=None):
global NEW_DATA_ON_LEADERBOARD
global LEADERBOARD_DF
if NEW_DATA_ON_LEADERBOARD:
logging.info("Leaderboard updated at reload!")
try:
leaderboard_dataset = datasets.load_dataset(
AGGREGATED_REPO,
"default",
split="train",
cache_dir=HF_HOME,
download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD, # Always download fresh data
verification_mode="no_checks"
)
LEADERBOARD_DF = get_leaderboard_df(
leaderboard_dataset=leaderboard_dataset,
cols=COLS,
benchmark_cols=BENCHMARK_COLS,
)
logging.info("Leaderboard dataset successfully downloaded.")
except Exception as e:
logging.error(f"Failed to download leaderboard dataset: {e}")
return
# Reset the flag after successful download
NEW_DATA_ON_LEADERBOARD = False
else:
LEADERBOARD_DF = leaderboard_initial_df
logging.info("Using cached leaderboard dataset.")
return LEADERBOARD_DF
def get_latest_data_queue():
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return eval_queue_dfs
def init_space():
"""Initializes the application space, loading only necessary data."""
global NEW_DATA_ON_LEADERBOARD
NEW_DATA_ON_LEADERBOARD = True # Ensure new data is always pulled on restart
if DO_FULL_INIT:
# These downloads only occur on full initialization
try:
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_dataset(VOTES_REPO, VOTES_PATH)
except Exception:
restart_space()
# Always redownload the leaderboard DataFrame
global LEADERBOARD_DF
LEADERBOARD_DF = get_latest_data_leaderboard()
# Evaluation queue DataFrame retrieval is independent of initialization detail level
eval_queue_dfs = get_latest_data_queue()
return LEADERBOARD_DF, eval_queue_dfs
# Initialize VoteManager
vote_manager = VoteManager(VOTES_PATH, EVAL_REQUESTS_PATH, VOTES_REPO)
# Schedule the upload_votes method to run every 15 minutes
schedule.every(15).minutes.do(vote_manager.upload_votes)
# Start the scheduler in a separate thread
scheduler_thread = Thread(target=run_scheduler, args=(vote_manager,), daemon=True)
scheduler_thread.start()
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
LEADERBOARD_DF, eval_queue_dfs = init_space()
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.fullname.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
),
ColumnFilter(
AutoEvalColumn.merged.name, type="boolean", label="Merge/MoErge", default=True
),
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False),
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True),
ColumnFilter(AutoEvalColumn.maintainers_highlight.name, type="boolean", label="Show only maintainer's highlight", default=False),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
main_block = gr.Blocks(css=custom_css)
with main_block:
with gr.Row(elem_id="header-row"):
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸš€ Submit ", elem_id="llm-benchmark-tab-table", id=5):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
login_button = gr.LoginButton(elem_id="oauth-button")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="latest")
with gr.Row():
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=ModelType.FT.to_str(" : "),
interactive=True,
)
chat_template_toggle = gr.Checkbox(
label="Use chat template",
value=False,
info="Is your model a chat model?",
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value=WeightType.Original.value.name,
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", interactive=False)
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
interactive=False,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
interactive=False,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
interactive=False,
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
# The chat template checkbox update function
def update_chat_checkbox(model_type_value):
return ModelType.from_str(model_type_value) == ModelType.chat
model_type.change(
fn=update_chat_checkbox,
inputs=[model_type], # Pass the current checkbox value
outputs=chat_template_toggle,
)
# The base_model_name_textbox interactivity and value reset function
def update_base_model_name_textbox(weight_type_value):
# Convert the dropdown value back to the corresponding WeightType Enum
weight_type_enum = WeightType[weight_type_value]
# Determine if the textbox should be interactive
interactive = weight_type_enum in [WeightType.Adapter, WeightType.Delta]
# Reset the value if weight type is "Original"
reset_value = "" if not interactive else None
return gr.update(interactive=interactive, value=reset_value)
weight_type.change(
fn=update_base_model_name_textbox,
inputs=[weight_type],
outputs=[base_model_name_textbox],
)
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
chat_template_toggle,
],
submission_result,
)
# Ensure the values in 'pending_eval_queue_df' are correct and ready for the DataFrame component
with gr.TabItem("πŸ†™ Model Vote"):
with gr.Row():
gr.Markdown(
"## Vote for the models which should be evaluated first! \nYou'll need to sign in with the button above first. All votes are recorded.",
elem_classes="markdown-text"
)
login_button = gr.LoginButton(elem_id="oauth-button")
with gr.Row():
pending_models = pending_eval_queue_df[EvalQueueColumn.model_name.name].to_list()
with gr.Column():
selected_model = gr.Dropdown(
choices=pending_models,
label="Models",
multiselect=False,
value="str",
interactive=True,
)
vote_button = gr.Button("Vote", variant="primary")
with gr.Row():
with gr.Accordion(
f"Available models pending ({len(pending_eval_queue_df)})",
open=True,
):
with gr.Row():
pending_eval_table_votes = gr.components.Dataframe(
value=vote_manager.create_request_vote_df(
pending_eval_queue_df
),
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
interactive=False
)
# Set the click event for the vote button
vote_button.click(
vote_manager.add_vote,
inputs=[selected_model, pending_eval_table],
outputs=[pending_eval_table_votes]
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
main_block.load(fn=get_latest_data_leaderboard, inputs=[leaderboard], outputs=[leaderboard])
leaderboard.change(fn=get_latest_data_queue, inputs=None, outputs=[finished_eval_table, running_eval_table, pending_eval_table])
pending_eval_table.change(fn=vote_manager.create_request_vote_df, inputs=[pending_eval_table], outputs=[pending_eval_table_votes])
main_block.queue(default_concurrency_limit=40)
def enable_space_ci_and_return_server(ui: gr.Blocks) -> WebhooksServer:
# Taken from https://huggingface.co/spaces/Wauplin/gradio-space-ci/blob/075119aee75ab5e7150bf0814eec91c83482e790/src/gradio_space_ci/webhook.py#L61
# Compared to original, this one do not monkeypatch Gradio which allows us to define more webhooks.
# ht to Lucain!
if SPACE_ID is None:
print("Not in a Space: Space CI disabled.")
return WebhooksServer(ui=main_block)
if IS_EPHEMERAL_SPACE:
print("In an ephemeral Space: Space CI disabled.")
return WebhooksServer(ui=main_block)
card = RepoCard.load(repo_id_or_path=SPACE_ID, repo_type="space")
config = card.data.get("space_ci", {})
print(f"Enabling Space CI with config from README: {config}")
return configure_space_ci(
blocks=ui,
trusted_authors=config.get("trusted_authors"),
private=config.get("private", "auto"),
variables=config.get("variables", "auto"),
secrets=config.get("secrets"),
hardware=config.get("hardware"),
storage=config.get("storage"),
)
# Create webhooks server (with CI url if in Space and not ephemeral)
webhooks_server = enable_space_ci_and_return_server(ui=main_block)
# Add webhooks
@webhooks_server.add_webhook
def update_leaderboard(payload: WebhookPayload) -> None:
"""Redownloads the leaderboard dataset each time it updates"""
if payload.repo.type == "dataset" and payload.event.action == "update":
global NEW_DATA_ON_LEADERBOARD
logging.info("New data detected, downloading updated leaderboard dataset.")
# Mark the flag for new data
NEW_DATA_ON_LEADERBOARD = True
# Now actually download the latest data immediately
get_latest_data_leaderboard()
# The below code is not used at the moment, as we can manage the queue file locally
LAST_UPDATE_QUEUE = datetime.datetime.now()
@webhooks_server.add_webhook
def update_queue(payload: WebhookPayload) -> None:
"""Redownloads the queue dataset each time it updates"""
if payload.repo.type == "dataset" and payload.event.action == "update":
current_time = datetime.datetime.now()
global LAST_UPDATE_QUEUE
if current_time - LAST_UPDATE_QUEUE > datetime.timedelta(minutes=10):
print("Would have updated the queue")
# We only redownload is last update was more than 10 minutes ago, as the queue is
# updated regularly and heavy to download
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
LAST_UPDATE_QUEUE = datetime.datetime.now()
webhooks_server.launch()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", hours=1) # Restart every 1h
logging.info("Scheduler initialized to restart space every 1 hour.")
scheduler.start()