Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Nathan Habib
commited on
Commit
·
df0b79f
1
Parent(s):
d1e81be
commit
Browse files- app.py +3 -3
- src/leaderboard/read_evals.py +2 -0
- src/populate.py +8 -1
- src/submission/check_validity.py +3 -0
app.py
CHANGED
@@ -50,21 +50,21 @@ def init_space(full_init: bool = True):
|
|
50 |
try:
|
51 |
print(EVAL_REQUESTS_PATH)
|
52 |
snapshot_download(
|
53 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
54 |
)
|
55 |
except Exception:
|
56 |
restart_space()
|
57 |
try:
|
58 |
print(DYNAMIC_INFO_PATH)
|
59 |
snapshot_download(
|
60 |
-
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
61 |
)
|
62 |
except Exception:
|
63 |
restart_space()
|
64 |
try:
|
65 |
print(EVAL_RESULTS_PATH)
|
66 |
snapshot_download(
|
67 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
68 |
)
|
69 |
except Exception:
|
70 |
restart_space()
|
|
|
50 |
try:
|
51 |
print(EVAL_REQUESTS_PATH)
|
52 |
snapshot_download(
|
53 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, max_workers=8
|
54 |
)
|
55 |
except Exception:
|
56 |
restart_space()
|
57 |
try:
|
58 |
print(DYNAMIC_INFO_PATH)
|
59 |
snapshot_download(
|
60 |
+
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, max_workers=8
|
61 |
)
|
62 |
except Exception:
|
63 |
restart_space()
|
64 |
try:
|
65 |
print(EVAL_RESULTS_PATH)
|
66 |
snapshot_download(
|
67 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, max_workers=8
|
68 |
)
|
69 |
except Exception:
|
70 |
restart_space()
|
src/leaderboard/read_evals.py
CHANGED
@@ -202,6 +202,8 @@ def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: st
|
|
202 |
# Creation of result
|
203 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
204 |
eval_result.update_with_request_file(requests_path)
|
|
|
|
|
205 |
if eval_result.full_model in dynamic_data:
|
206 |
eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
|
207 |
# Hardcoding because of gating problem
|
|
|
202 |
# Creation of result
|
203 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
204 |
eval_result.update_with_request_file(requests_path)
|
205 |
+
if eval_result.full_model == "databricks/dbrx-base":
|
206 |
+
print("WE HERE")
|
207 |
if eval_result.full_model in dynamic_data:
|
208 |
eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
|
209 |
# Hardcoding because of gating problem
|
src/populate.py
CHANGED
@@ -13,9 +13,12 @@ def get_leaderboard_df(results_path: str, requests_path: str, dynamic_path: str,
|
|
13 |
raw_data = get_raw_eval_results(results_path=results_path, requests_path=requests_path, dynamic_path=dynamic_path)
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
all_data_json.append(baseline_row)
|
|
|
16 |
filter_models_flags(all_data_json)
|
17 |
|
18 |
df = pd.DataFrame.from_records(all_data_json)
|
|
|
|
|
19 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
20 |
df = df[cols].round(decimals=2)
|
21 |
|
@@ -44,7 +47,11 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
44 |
for sub_entry in sub_entries:
|
45 |
file_path = os.path.join(save_path, entry, sub_entry)
|
46 |
with open(file_path) as fp:
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
|
49 |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
50 |
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
|
|
13 |
raw_data = get_raw_eval_results(results_path=results_path, requests_path=requests_path, dynamic_path=dynamic_path)
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
all_data_json.append(baseline_row)
|
16 |
+
print([data for data in all_data_json if data["model_name_for_query"] == "databricks/dbrx-base"])
|
17 |
filter_models_flags(all_data_json)
|
18 |
|
19 |
df = pd.DataFrame.from_records(all_data_json)
|
20 |
+
print(df.columns)
|
21 |
+
print(df[df["model_name_for_query"] == "databricks/dbrx-base"])
|
22 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
23 |
df = df[cols].round(decimals=2)
|
24 |
|
|
|
47 |
for sub_entry in sub_entries:
|
48 |
file_path = os.path.join(save_path, entry, sub_entry)
|
49 |
with open(file_path) as fp:
|
50 |
+
try:
|
51 |
+
data = json.load(fp)
|
52 |
+
except json.JSONDecodeError:
|
53 |
+
print(f"Error reading {file_path}")
|
54 |
+
continue
|
55 |
|
56 |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
57 |
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
src/submission/check_validity.py
CHANGED
@@ -150,6 +150,9 @@ def get_model_tags(model_card, model: str):
|
|
150 |
if is_merge_from_model_card or is_merge_from_metadata:
|
151 |
tags.append("merge")
|
152 |
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
|
|
|
|
|
|
|
153 |
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
|
154 |
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
|
155 |
tags.append("moe")
|
|
|
150 |
if is_merge_from_model_card or is_merge_from_metadata:
|
151 |
tags.append("merge")
|
152 |
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
|
153 |
+
# Hardcoding because of gating problem
|
154 |
+
if model == "Qwen/Qwen1.5-32B":
|
155 |
+
is_moe_from_model_card = False
|
156 |
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
|
157 |
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
|
158 |
tags.append("moe")
|