ArcFace / app.py
akhaliq's picture
akhaliq HF staff
Update app.py
8c8af2c
raw
history blame
6.5 kB
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cv2
import sys
import numpy as np
import mxnet as mx
import os
from scipy import misc
import random
import sklearn
from sklearn.decomposition import PCA
from time import sleep
from easydict import EasyDict as edict
from mtcnn_detector import MtcnnDetector
from skimage import transform as trans
import matplotlib.pyplot as plt
from mxnet.contrib.onnx.onnx2mx.import_model import import_model
import gradio as gr
def get_model(ctx, model):
image_size = (112,112)
# Import ONNX model
sym, arg_params, aux_params = import_model(model)
# Define and binds parameters to the network
model = mx.mod.Module(symbol=sym, context=ctx, label_names = None)
model.bind(data_shapes=[('data', (1, 3, image_size[0], image_size[1]))])
model.set_params(arg_params, aux_params)
return model
for i in range(4):
mx.test_utils.download(dirname='mtcnn-model', url='https://s3.amazonaws.com/onnx-model-zoo/arcface/mtcnn-model/det{}-0001.params'.format(i+1))
mx.test_utils.download(dirname='mtcnn-model', url='https://s3.amazonaws.com/onnx-model-zoo/arcface/mtcnn-model/det{}-symbol.json'.format(i+1))
mx.test_utils.download(dirname='mtcnn-model', url='https://s3.amazonaws.com/onnx-model-zoo/arcface/mtcnn-model/det{}.caffemodel'.format(i+1))
mx.test_utils.download(dirname='mtcnn-model', url='https://s3.amazonaws.com/onnx-model-zoo/arcface/mtcnn-model/det{}.prototxt'.format(i+1))
# Determine and set context
if len(mx.test_utils.list_gpus())==0:
ctx = mx.cpu()
else:
ctx = mx.gpu(0)
# Configure face detector
det_threshold = [0.6,0.7,0.8]
mtcnn_path = os.path.join(os.path.dirname('__file__'), 'mtcnn-model')
detector = MtcnnDetector(model_folder=mtcnn_path, ctx=ctx, num_worker=1, accurate_landmark = True, threshold=det_threshold)
def preprocess(img, bbox=None, landmark=None, **kwargs):
M = None
image_size = []
str_image_size = kwargs.get('image_size', '')
# Assert input shape
if len(str_image_size)>0:
image_size = [int(x) for x in str_image_size.split(',')]
if len(image_size)==1:
image_size = [image_size[0], image_size[0]]
assert len(image_size)==2
assert image_size[0]==112
assert image_size[0]==112 or image_size[1]==96
# Do alignment using landmark points
if landmark is not None:
assert len(image_size)==2
src = np.array([
[30.2946, 51.6963],
[65.5318, 51.5014],
[48.0252, 71.7366],
[33.5493, 92.3655],
[62.7299, 92.2041] ], dtype=np.float32 )
if image_size[1]==112:
src[:,0] += 8.0
dst = landmark.astype(np.float32)
tform = trans.SimilarityTransform()
tform.estimate(dst, src)
M = tform.params[0:2,:]
assert len(image_size)==2
warped = cv2.warpAffine(img,M,(image_size[1],image_size[0]), borderValue = 0.0)
return warped
# If no landmark points available, do alignment using bounding box. If no bounding box available use center crop
if M is None:
if bbox is None:
det = np.zeros(4, dtype=np.int32)
det[0] = int(img.shape[1]*0.0625)
det[1] = int(img.shape[0]*0.0625)
det[2] = img.shape[1] - det[0]
det[3] = img.shape[0] - det[1]
else:
det = bbox
margin = kwargs.get('margin', 44)
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img.shape[1])
bb[3] = np.minimum(det[3]+margin/2, img.shape[0])
ret = img[bb[1]:bb[3],bb[0]:bb[2],:]
if len(image_size)>0:
ret = cv2.resize(ret, (image_size[1], image_size[0]))
return ret
def get_input(detector,face_img):
# Pass input images through face detector
ret = detector.detect_face(face_img, det_type = 0)
if ret is None:
return None
bbox, points = ret
if bbox.shape[0]==0:
return None
bbox = bbox[0,0:4]
points = points[0,:].reshape((2,5)).T
# Call preprocess() to generate aligned images
nimg = preprocess(face_img, bbox, points, image_size='112,112')
nimg = cv2.cvtColor(nimg, cv2.COLOR_BGR2RGB)
aligned = np.transpose(nimg, (2,0,1))
return aligned
def get_feature(model,aligned):
input_blob = np.expand_dims(aligned, axis=0)
data = mx.nd.array(input_blob)
db = mx.io.DataBatch(data=(data,))
model.forward(db, is_train=False)
embedding = model.get_outputs()[0].asnumpy()
embedding = sklearn.preprocessing.normalize(embedding).flatten()
return embedding
# Download first image
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/arcface/player1.jpg')
# Download second image
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/arcface/player2.jpg')
# Download onnx model
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/arcface/resnet100.onnx')
# Path to ONNX model
model_name = 'resnet100.onnx'
# Load ONNX model
model = get_model(ctx , model_name)
def inference(first,second):
# Load first image
img1 = cv2.imread(first)
# Preprocess first image
pre1 = get_input(detector,img1)
# Get embedding of first image
out1 = get_feature(model,pre1)
# Load second image
img2 = cv2.imread(second)
# Preprocess second image
pre2 = get_input(detector,img2)
# Get embedding of second image
out2 = get_feature(model,pre2)
# Compute squared distance between embeddings
dist = np.sum(np.square(out1-out2))
# Compute cosine similarity between embedddings
sim = np.dot(out1, out2.T)
# Print predictions
return 'Distance = %f' %(dist),'Similarity = %f' %(sim)
title="ArcFace"
description="ArcFace is a CNN based model for face recognition which learns discriminative features of faces and produces embeddings for input face images. To enhance the discriminative power of softmax loss, a novel supervisor signal called additive angular margin (ArcFace) is used here as an additive term in the softmax loss. ArcFace can use a variety of CNN networks as its backend, each having different accuracy and performance."
gr.Interface(inference,[gr.inputs.Image(type="filepath"),gr.inputs.Image(type="filepath")],["text","text"],title=title,description=description).launch(enable_queue=True)