akhaliq HF staff commited on
Commit
8c8af2c
1 Parent(s): 2fb6514

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -139,9 +139,9 @@ model_name = 'resnet100.onnx'
139
  # Load ONNX model
140
  model = get_model(ctx , model_name)
141
 
142
- def inference(img1,img2):
143
  # Load first image
144
- img1 = cv2.imread(img1)
145
 
146
  # Preprocess first image
147
  pre1 = get_input(detector,img1)
@@ -150,7 +150,7 @@ def inference(img1,img2):
150
  out1 = get_feature(model,pre1)
151
 
152
  # Load second image
153
- img2 = cv2.imread('player2.jpg')
154
 
155
  # Preprocess second image
156
  pre2 = get_input(detector,img2)
@@ -165,4 +165,6 @@ def inference(img1,img2):
165
  # Print predictions
166
  return 'Distance = %f' %(dist),'Similarity = %f' %(sim)
167
 
168
- gr.Interface(inference,[gr.inputs.Image(type="filepath"),gr.inputs.Image(type="filepath")],["text","text"]).launch()
 
 
 
139
  # Load ONNX model
140
  model = get_model(ctx , model_name)
141
 
142
+ def inference(first,second):
143
  # Load first image
144
+ img1 = cv2.imread(first)
145
 
146
  # Preprocess first image
147
  pre1 = get_input(detector,img1)
 
150
  out1 = get_feature(model,pre1)
151
 
152
  # Load second image
153
+ img2 = cv2.imread(second)
154
 
155
  # Preprocess second image
156
  pre2 = get_input(detector,img2)
 
165
  # Print predictions
166
  return 'Distance = %f' %(dist),'Similarity = %f' %(sim)
167
 
168
+ title="ArcFace"
169
+ description="ArcFace is a CNN based model for face recognition which learns discriminative features of faces and produces embeddings for input face images. To enhance the discriminative power of softmax loss, a novel supervisor signal called additive angular margin (ArcFace) is used here as an additive term in the softmax loss. ArcFace can use a variety of CNN networks as its backend, each having different accuracy and performance."
170
+ gr.Interface(inference,[gr.inputs.Image(type="filepath"),gr.inputs.Image(type="filepath")],["text","text"],title=title,description=description).launch(enable_queue=True)