Spaces:
Build error
Build error
尝试加入jittor本地模型
Browse files- .gitignore +1 -0
- request_llm/bridge_jittorllms.py +153 -0
- request_llm/requirements_jittorllms.txt +4 -0
- request_llm/test_llms.py +26 -0
.gitignore
CHANGED
@@ -146,3 +146,4 @@ debug*
|
|
146 |
private*
|
147 |
crazy_functions/test_project/pdf_and_word
|
148 |
crazy_functions/test_samples
|
|
|
|
146 |
private*
|
147 |
crazy_functions/test_project/pdf_and_word
|
148 |
crazy_functions/test_samples
|
149 |
+
request_llm/jittorllms
|
request_llm/bridge_jittorllms.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
import time
|
4 |
+
import threading
|
5 |
+
import importlib
|
6 |
+
from toolbox import update_ui, get_conf
|
7 |
+
from multiprocessing import Process, Pipe
|
8 |
+
|
9 |
+
load_message = "jittorllms尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
10 |
+
|
11 |
+
#################################################################################
|
12 |
+
class GetGLMHandle(Process):
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__(daemon=True)
|
15 |
+
self.parent, self.child = Pipe()
|
16 |
+
self.jittorllms_model = None
|
17 |
+
self.info = ""
|
18 |
+
self.success = True
|
19 |
+
self.check_dependency()
|
20 |
+
self.start()
|
21 |
+
self.threadLock = threading.Lock()
|
22 |
+
|
23 |
+
def check_dependency(self):
|
24 |
+
try:
|
25 |
+
import jittor
|
26 |
+
from .jittorllms.models import get_model
|
27 |
+
self.info = "依赖检测通过"
|
28 |
+
self.success = True
|
29 |
+
except:
|
30 |
+
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt`"+\
|
31 |
+
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。"
|
32 |
+
self.success = False
|
33 |
+
|
34 |
+
def ready(self):
|
35 |
+
return self.jittorllms_model is not None
|
36 |
+
|
37 |
+
def run(self):
|
38 |
+
# 子进程执行
|
39 |
+
# 第一次运行,加载参数
|
40 |
+
def load_model():
|
41 |
+
import types
|
42 |
+
try:
|
43 |
+
if self.jittorllms_model is None:
|
44 |
+
device, = get_conf('LOCAL_MODEL_DEVICE')
|
45 |
+
from .jittorllms.models import get_model
|
46 |
+
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
47 |
+
args_dict = {'model': 'chatglm', 'RUN_DEVICE':'cpu'}
|
48 |
+
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
49 |
+
except:
|
50 |
+
self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
|
51 |
+
raise RuntimeError("不能正常加载jittorllms的参数!")
|
52 |
+
|
53 |
+
load_model()
|
54 |
+
|
55 |
+
# 进入任务等待状态
|
56 |
+
while True:
|
57 |
+
# 进入任务等待状态
|
58 |
+
kwargs = self.child.recv()
|
59 |
+
# 收到消息,开始请求
|
60 |
+
try:
|
61 |
+
for response, history in self.jittorllms_model.run_web_demo(kwargs['query'], kwargs['history']):
|
62 |
+
self.child.send(response)
|
63 |
+
except:
|
64 |
+
self.child.send('[Local Message] Call jittorllms fail.')
|
65 |
+
# 请求处理结束,开始下一个循环
|
66 |
+
self.child.send('[Finish]')
|
67 |
+
|
68 |
+
def stream_chat(self, **kwargs):
|
69 |
+
# 主进程执行
|
70 |
+
self.threadLock.acquire()
|
71 |
+
self.parent.send(kwargs)
|
72 |
+
while True:
|
73 |
+
res = self.parent.recv()
|
74 |
+
if res != '[Finish]':
|
75 |
+
yield res
|
76 |
+
else:
|
77 |
+
break
|
78 |
+
self.threadLock.release()
|
79 |
+
|
80 |
+
global glm_handle
|
81 |
+
glm_handle = None
|
82 |
+
#################################################################################
|
83 |
+
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
84 |
+
"""
|
85 |
+
多线程方法
|
86 |
+
函数的说明请见 request_llm/bridge_all.py
|
87 |
+
"""
|
88 |
+
global glm_handle
|
89 |
+
if glm_handle is None:
|
90 |
+
glm_handle = GetGLMHandle()
|
91 |
+
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glm_handle.info
|
92 |
+
if not glm_handle.success:
|
93 |
+
error = glm_handle.info
|
94 |
+
glm_handle = None
|
95 |
+
raise RuntimeError(error)
|
96 |
+
|
97 |
+
# jittorllms 没有 sys_prompt 接口,因此把prompt加入 history
|
98 |
+
history_feedin = []
|
99 |
+
history_feedin.append(["What can I do?", sys_prompt])
|
100 |
+
for i in range(len(history)//2):
|
101 |
+
history_feedin.append([history[2*i], history[2*i+1]] )
|
102 |
+
|
103 |
+
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
104 |
+
response = ""
|
105 |
+
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
106 |
+
if len(observe_window) >= 1: observe_window[0] = response
|
107 |
+
if len(observe_window) >= 2:
|
108 |
+
if (time.time()-observe_window[1]) > watch_dog_patience:
|
109 |
+
raise RuntimeError("程序终止。")
|
110 |
+
return response
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
115 |
+
"""
|
116 |
+
单线程方法
|
117 |
+
函数的说明请见 request_llm/bridge_all.py
|
118 |
+
"""
|
119 |
+
chatbot.append((inputs, ""))
|
120 |
+
|
121 |
+
global glm_handle
|
122 |
+
if glm_handle is None:
|
123 |
+
glm_handle = GetGLMHandle()
|
124 |
+
chatbot[-1] = (inputs, load_message + "\n\n" + glm_handle.info)
|
125 |
+
yield from update_ui(chatbot=chatbot, history=[])
|
126 |
+
if not glm_handle.success:
|
127 |
+
glm_handle = None
|
128 |
+
return
|
129 |
+
|
130 |
+
if additional_fn is not None:
|
131 |
+
import core_functional
|
132 |
+
importlib.reload(core_functional) # 热更新prompt
|
133 |
+
core_functional = core_functional.get_core_functions()
|
134 |
+
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
135 |
+
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
136 |
+
|
137 |
+
# 处理历史信息
|
138 |
+
history_feedin = []
|
139 |
+
history_feedin.append(["What can I do?", system_prompt] )
|
140 |
+
for i in range(len(history)//2):
|
141 |
+
history_feedin.append([history[2*i], history[2*i+1]] )
|
142 |
+
|
143 |
+
# 开始接收jittorllms的回复
|
144 |
+
response = "[Local Message]: 等待jittorllms响应中 ..."
|
145 |
+
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
146 |
+
chatbot[-1] = (inputs, response)
|
147 |
+
yield from update_ui(chatbot=chatbot, history=history)
|
148 |
+
|
149 |
+
# 总结输出
|
150 |
+
if response == "[Local Message]: 等待jittorllms响应中 ...":
|
151 |
+
response = "[Local Message]: jittorllms响应异常 ..."
|
152 |
+
history.extend([inputs, response])
|
153 |
+
yield from update_ui(chatbot=chatbot, history=history)
|
request_llm/requirements_jittorllms.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
jittor >= 1.3.7.9
|
2 |
+
jtorch >= 0.1.3
|
3 |
+
torch
|
4 |
+
torchvision
|
request_llm/test_llms.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
对各个llm模型进行单元测试
|
3 |
+
"""
|
4 |
+
def validate_path():
|
5 |
+
import os, sys
|
6 |
+
dir_name = os.path.dirname(__file__)
|
7 |
+
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
|
8 |
+
os.chdir(root_dir_assume)
|
9 |
+
sys.path.append(root_dir_assume)
|
10 |
+
|
11 |
+
validate_path() # validate path so you can run from base directory
|
12 |
+
|
13 |
+
from request_llm.bridge_jittorllms import predict_no_ui_long_connection
|
14 |
+
|
15 |
+
llm_kwargs = {
|
16 |
+
'max_length': 512,
|
17 |
+
'top_p': 1,
|
18 |
+
'temperature': 1,
|
19 |
+
}
|
20 |
+
|
21 |
+
result = predict_no_ui_long_connection(inputs="你好",
|
22 |
+
llm_kwargs=llm_kwargs,
|
23 |
+
history=[],
|
24 |
+
sys_prompt="")
|
25 |
+
|
26 |
+
print('result')
|