Spaces:
Build error
Build error
new
Browse files- README.md +72 -33
- app.py +47 -78
- check_proxy.py +8 -0
- config.py +24 -7
- crazy_functional.py +34 -10
- crazy_functions/Latex全文润色.py +2 -2
- crazy_functions/Latex全文翻译.py +2 -2
- crazy_functions/Latex输出PDF结果.py +3 -0
- crazy_functions/crazy_utils.py +3 -174
- crazy_functions/latex_fns/latex_actions.py +6 -5
- crazy_functions/latex_fns/latex_toolbox.py +33 -4
- crazy_functions/multi_stage/multi_stage_utils.py +56 -8
- crazy_functions/pdf_fns/parse_pdf.py +2 -2
- crazy_functions/图片生成.py +105 -33
- crazy_functions/总结word文档.py +2 -7
- crazy_functions/批量Markdown翻译.py +2 -2
- crazy_functions/批量总结PDF文档.py +3 -8
- crazy_functions/批量翻译PDF文档_多线程.py +3 -8
- crazy_functions/理解PDF文档内容.py +4 -9
- crazy_functions/解析JupyterNotebook.py +2 -10
- docs/translate_english.json +110 -9
- docs/translate_traditionalchinese.json +3 -3
- multi_language.py +11 -11
- request_llms/bridge_all.py +36 -4
- request_llms/bridge_chatgpt.py +14 -8
- request_llms/bridge_chatgpt_vision.py +3 -20
- request_llms/bridge_deepseekcoder.py +44 -3
- request_llms/bridge_qwen.py +61 -66
- request_llms/bridge_spark.py +2 -2
- request_llms/com_sparkapi.py +29 -12
- request_llms/local_llm_class.py +2 -2
- request_llms/requirements_chatglm_onnx.txt +0 -2
- request_llms/requirements_moss.txt +0 -1
- request_llms/requirements_qwen.txt +1 -2
- requirements.txt +1 -0
- tests/test_llms.py +3 -2
- tests/test_plugins.py +3 -3
- tests/test_utils.py +6 -3
- themes/common.js +387 -49
- themes/green.css +2 -2
- themes/theme.py +98 -3
- toolbox.py +122 -17
- version +2 -2
README.md
CHANGED
@@ -14,41 +14,69 @@ pinned: false
|
|
14 |
>
|
15 |
> 2023.11.12: 某些依赖包尚不兼容python 3.12,推荐python 3.11。
|
16 |
>
|
17 |
-
> 2023.
|
18 |
|
|
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
**如果喜欢这个项目,请给它一个Star;如果您发明了好用的快捷键或插件,欢迎发pull requests!**
|
24 |
|
25 |
-
If you like this project, please give it a Star.
|
26 |
-
To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
|
|
|
|
|
27 |
|
28 |
-
> **Note**
|
29 |
-
>
|
30 |
> 1.请注意只有 **高亮** 标识的插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR。
|
31 |
>
|
32 |
-
> 2.本项目中每个文件的功能都在[
|
|
|
33 |
>
|
34 |
-
> 3
|
35 |
-
|
36 |
|
37 |
-
|
38 |
|
39 |
<div align="center">
|
40 |
|
41 |
功能(⭐= 近期新增功能) | 描述
|
42 |
--- | ---
|
43 |
-
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B)
|
44 |
润色、翻译、代码解释 | 一键润色、翻译、查找论文语法错误、解释代码
|
45 |
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
|
46 |
模块化设计 | 支持自定义强大的[插件](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions),插件支持[热更新](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
|
47 |
-
[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [插件]
|
48 |
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [插件] 一键解读latex/pdf论文全文并生成摘要
|
49 |
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
|
50 |
批量注释生成 | [插件] 一键批量生成函数注释
|
51 |
-
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)
|
52 |
chat分析报告生成 | [插件] 运行后自动生成总结汇报
|
53 |
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
|
54 |
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
@@ -60,22 +88,22 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
|
60 |
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
|
61 |
⭐AutoGen多智能体插件 | [插件] 借助微软AutoGen,探索多Agent的智能涌现可能!
|
62 |
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
|
63 |
-
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)
|
64 |
⭐ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调辅助插件
|
65 |
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
|
66 |
⭐[void-terminal](https://github.com/binary-husky/void-terminal) pip包 | 脱离GUI,在Python中直接调用本项目的所有函数插件(开发中)
|
67 |
-
⭐虚空终端插件 | [插件]
|
68 |
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
|
69 |
</div>
|
70 |
|
71 |
|
72 |
- 新界面(修改`config.py`中的LAYOUT选项即可实现“左右布局”和“上下布局”的切换)
|
73 |
<div align="center">
|
74 |
-
<img src="https://
|
75 |
</div>
|
76 |
|
77 |
|
78 |
-
- 所有按钮都通过读取functional.py
|
79 |
<div align="center">
|
80 |
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
|
81 |
</div>
|
@@ -85,21 +113,23 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
|
85 |
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
|
86 |
</div>
|
87 |
|
88 |
-
-
|
89 |
<div align="center">
|
90 |
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
|
91 |
</div>
|
92 |
|
93 |
-
-
|
94 |
<div align="center">
|
95 |
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
|
96 |
</div>
|
97 |
|
98 |
-
- 多种大语言模型混合调用(ChatGLM + OpenAI-GPT3.5 +
|
99 |
<div align="center">
|
100 |
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
|
101 |
</div>
|
102 |
|
|
|
|
|
103 |
# Installation
|
104 |
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
105 |
|
@@ -110,13 +140,13 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
|
110 |
cd gpt_academic
|
111 |
```
|
112 |
|
113 |
-
2. 配置API_KEY
|
114 |
|
115 |
-
在`config.py`中,配置API KEY
|
116 |
|
117 |
-
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py
|
118 |
|
119 |
-
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。配置读取优先级: `环境变量` > `config_private.py` > `config.py
|
120 |
|
121 |
|
122 |
3. 安装依赖
|
@@ -149,6 +179,14 @@ git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss #
|
|
149 |
|
150 |
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
151 |
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
```
|
153 |
|
154 |
</p>
|
@@ -163,7 +201,7 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-
|
|
163 |
|
164 |
### 安装方法II:使用Docker
|
165 |
|
166 |
-
0. 部署项目的全部能力(这个是包含cuda和latex
|
167 |
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
|
168 |
|
169 |
``` sh
|
@@ -192,26 +230,26 @@ P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以
|
|
192 |
```
|
193 |
|
194 |
|
195 |
-
### 安装方法III
|
196 |
1. **Windows一键运行脚本**。
|
197 |
-
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)
|
198 |
-
脚本的贡献来源是[oobabooga](https://github.com/oobabooga/one-click-installers)。
|
199 |
|
200 |
2. 使用第三方API、Azure等、文心一言、星火等,见[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)
|
201 |
|
202 |
3. 云服务器远程部署避坑指南。
|
203 |
请访问[云服务器远程部署wiki](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
|
204 |
|
205 |
-
4.
|
206 |
- 使用Sealos[一键部署](https://github.com/binary-husky/gpt_academic/issues/993)。
|
207 |
- 使用WSL2(Windows Subsystem for Linux 子系统)。请访问[部署wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
|
208 |
- 如何在二级网址(如`http://localhost/subpath`)下运行。请访问[FastAPI运行说明](docs/WithFastapi.md)
|
209 |
|
|
|
210 |
|
211 |
# Advanced Usage
|
212 |
### I:自定义新的便捷按钮(学术快捷键)
|
213 |
|
214 |
-
任意文本编辑器打开`core_functional.py
|
215 |
例如
|
216 |
|
217 |
```python
|
@@ -233,6 +271,7 @@ P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以
|
|
233 |
本项目的插件编写、调试难度很低,只要您具备一定的python基础知识,就可以仿照我们提供的模板实现自己的插件功能。
|
234 |
详情请参考[函数插件指南](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)。
|
235 |
|
|
|
236 |
|
237 |
# Updates
|
238 |
### I:动态
|
@@ -332,7 +371,7 @@ GPT Academic开发者QQ群:`610599535`
|
|
332 |
|
333 |
- 已知问题
|
334 |
- 某些浏览器翻译插件干扰此软件前端的运行
|
335 |
-
- 官方Gradio
|
336 |
|
337 |
### III:主题
|
338 |
可以通过修改`THEME`选项(config.py)变更主题
|
@@ -343,8 +382,8 @@ GPT Academic开发者QQ群:`610599535`
|
|
343 |
|
344 |
1. `master` 分支: 主分支,稳定版
|
345 |
2. `frontier` 分支: 开发分支,测试版
|
346 |
-
3.
|
347 |
-
|
348 |
|
349 |
### V:参考与学习
|
350 |
|
|
|
14 |
>
|
15 |
> 2023.11.12: 某些依赖包尚不兼容python 3.12,推荐python 3.11。
|
16 |
>
|
17 |
+
> 2023.12.26: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
18 |
|
19 |
+
<br>
|
20 |
|
21 |
+
<div align=center>
|
22 |
+
<h1 aligh="center">
|
23 |
+
<img src="docs/logo.png" width="40"> GPT 学术优化 (GPT Academic)
|
24 |
+
</h1>
|
25 |
|
26 |
+
[![Github][Github-image]][Github-url]
|
27 |
+
[![License][License-image]][License-url]
|
28 |
+
[![Releases][Releases-image]][Releases-url]
|
29 |
+
[![Installation][Installation-image]][Installation-url]
|
30 |
+
[![Wiki][Wiki-image]][Wiki-url]
|
31 |
+
[![PR][PRs-image]][PRs-url]
|
32 |
+
|
33 |
+
[Github-image]: https://img.shields.io/badge/github-12100E.svg?style=flat-square
|
34 |
+
[License-image]: https://img.shields.io/github/license/binary-husky/gpt_academic?label=License&style=flat-square&color=orange
|
35 |
+
[Releases-image]: https://img.shields.io/github/release/binary-husky/gpt_academic?label=Release&style=flat-square&color=blue
|
36 |
+
[Installation-image]: https://img.shields.io/badge/dynamic/json?color=blue&url=https://raw.githubusercontent.com/binary-husky/gpt_academic/master/version&query=$.version&label=Installation&style=flat-square
|
37 |
+
[Wiki-image]: https://img.shields.io/badge/wiki-项目文档-black?style=flat-square
|
38 |
+
[PRs-image]: https://img.shields.io/badge/PRs-welcome-pink?style=flat-square
|
39 |
+
|
40 |
+
[Github-url]: https://github.com/binary-husky/gpt_academic
|
41 |
+
[License-url]: https://github.com/binary-husky/gpt_academic/blob/master/LICENSE
|
42 |
+
[Releases-url]: https://github.com/binary-husky/gpt_academic/releases
|
43 |
+
[Installation-url]: https://github.com/binary-husky/gpt_academic#installation
|
44 |
+
[Wiki-url]: https://github.com/binary-husky/gpt_academic/wiki
|
45 |
+
[PRs-url]: https://github.com/binary-husky/gpt_academic/pulls
|
46 |
+
|
47 |
+
|
48 |
+
</div>
|
49 |
+
<br>
|
50 |
|
51 |
**如果喜欢这个项目,请给它一个Star;如果您发明了好用的快捷键或插件,欢迎发pull requests!**
|
52 |
|
53 |
+
If you like this project, please give it a Star.
|
54 |
+
Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanese.md) | [한국어](docs/README.Korean.md) | [Русский](docs/README.Russian.md) | [Français](docs/README.French.md). All translations have been provided by the project itself. To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
|
55 |
+
<br>
|
56 |
+
|
57 |
|
|
|
|
|
58 |
> 1.请注意只有 **高亮** 标识的插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR。
|
59 |
>
|
60 |
+
> 2.本项目中每个文件的功能都在[自译解报告](https://github.com/binary-husky/gpt_academic/wiki/GPT‐Academic项目自译解报告)`self_analysis.md`详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题请查阅wiki。
|
61 |
+
> [![常规安装方法](https://img.shields.io/static/v1?label=&message=常规安装方法&color=gray)](#installation) [![一键安装脚本](https://img.shields.io/static/v1?label=&message=一键安装脚本&color=gray)](https://github.com/binary-husky/gpt_academic/releases) [![配置说明](https://img.shields.io/static/v1?label=&message=配置说明&color=gray)](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明) [![wiki](https://img.shields.io/static/v1?label=&message=wiki&color=gray)]([https://github.com/binary-husky/gpt_academic/wiki/项目配置说明](https://github.com/binary-husky/gpt_academic/wiki))
|
62 |
>
|
63 |
+
> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交即可生效。
|
|
|
64 |
|
65 |
+
<br><br>
|
66 |
|
67 |
<div align="center">
|
68 |
|
69 |
功能(⭐= 近期新增功能) | 描述
|
70 |
--- | ---
|
71 |
+
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, 通义千问[Qwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf),[智谱API](https://open.bigmodel.cn/),DALLE3, [DeepseekCoder](https://coder.deepseek.com/)
|
72 |
润色、翻译、代码解释 | 一键润色、翻译、查找论文语法错误、解释代码
|
73 |
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
|
74 |
模块化设计 | 支持自定义强大的[插件](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions),插件支持[热更新](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
|
75 |
+
[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [插件] 一键剖析Python/C/C++/Java/Lua/...项目树 或 [自我剖析](https://www.bilibili.com/video/BV1cj411A7VW)
|
76 |
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [插件] 一键解读latex/pdf论文全文并生成摘要
|
77 |
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
|
78 |
批量注释生成 | [插件] 一键批量生成函数注释
|
79 |
+
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?就是出自他的手笔
|
80 |
chat分析报告生成 | [插件] 运行后自动生成总结汇报
|
81 |
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
|
82 |
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
|
|
88 |
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
|
89 |
⭐AutoGen多智能体插件 | [插件] 借助微软AutoGen,探索多Agent的智能涌现可能!
|
90 |
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
|
91 |
+
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)伺候的感觉一定会很不错吧?
|
92 |
⭐ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调辅助插件
|
93 |
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
|
94 |
⭐[void-terminal](https://github.com/binary-husky/void-terminal) pip包 | 脱离GUI,在Python中直接调用本项目的所有函数插件(开发中)
|
95 |
+
⭐虚空终端插件 | [插件] 能够使用自然语言直接调度本项目其他插件
|
96 |
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
|
97 |
</div>
|
98 |
|
99 |
|
100 |
- 新界面(修改`config.py`中的LAYOUT选项即可实现“左右布局”和“上下布局”的切换)
|
101 |
<div align="center">
|
102 |
+
<img src="https://user-images.githubusercontent.com/96192199/279702205-d81137c3-affd-4cd1-bb5e-b15610389762.gif" width="700" >
|
103 |
</div>
|
104 |
|
105 |
|
106 |
+
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放剪贴板
|
107 |
<div align="center">
|
108 |
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
|
109 |
</div>
|
|
|
113 |
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
|
114 |
</div>
|
115 |
|
116 |
+
- 如果输出包含公式,会以tex形式和渲染形式同时显示,方便复制和阅读
|
117 |
<div align="center">
|
118 |
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
|
119 |
</div>
|
120 |
|
121 |
+
- 懒得看项目代码?直接把整个工程炫ChatGPT嘴里
|
122 |
<div align="center">
|
123 |
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
|
124 |
</div>
|
125 |
|
126 |
+
- 多种大语言模型混合调用(ChatGLM + OpenAI-GPT3.5 + GPT4)
|
127 |
<div align="center">
|
128 |
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
|
129 |
</div>
|
130 |
|
131 |
+
<br><br>
|
132 |
+
|
133 |
# Installation
|
134 |
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
135 |
|
|
|
140 |
cd gpt_academic
|
141 |
```
|
142 |
|
143 |
+
2. 配置API_KEY等变量
|
144 |
|
145 |
+
在`config.py`中,配置API KEY等变量。[特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1)、[Wiki-项目配置说明](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
|
146 |
|
147 |
+
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解以上读取逻辑,我们强烈建议您在`config.py`同路径下创建一个名为`config_private.py`的新配置文件,并使用`config_private.py`配置项目,以确保更新或其他用户无法轻易查看您的私有配置 」。
|
148 |
|
149 |
+
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。配置读取优先级: `环境变量` > `config_private.py` > `config.py` 」。
|
150 |
|
151 |
|
152 |
3. 安装依赖
|
|
|
179 |
|
180 |
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
181 |
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
182 |
+
|
183 |
+
# 【可选步骤V】���持本地模型INT8,INT4量化(这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择)
|
184 |
+
pip install bitsandbyte
|
185 |
+
# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
|
186 |
+
python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
|
187 |
+
pip install -U git+https://github.com/huggingface/transformers.git
|
188 |
+
pip install -U git+https://github.com/huggingface/accelerate.git
|
189 |
+
pip install peft
|
190 |
```
|
191 |
|
192 |
</p>
|
|
|
201 |
|
202 |
### 安装方法II:使用Docker
|
203 |
|
204 |
+
0. 部署项目的全部能力(这个是包含cuda和latex的大型镜像。但如果您网速慢、硬盘小,则不推荐该方法部署完整项目)
|
205 |
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
|
206 |
|
207 |
``` sh
|
|
|
230 |
```
|
231 |
|
232 |
|
233 |
+
### 安装方法III:其他部署方法
|
234 |
1. **Windows一键运行脚本**。
|
235 |
+
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。脚本贡献来源:[oobabooga](https://github.com/oobabooga/one-click-installers)。
|
|
|
236 |
|
237 |
2. 使用第三方API、Azure等、文心一言、星火等,见[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)
|
238 |
|
239 |
3. 云服务器远程部署避坑指南。
|
240 |
请访问[云服务器远程部署wiki](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
|
241 |
|
242 |
+
4. 在其他平台部署&二级网址部署
|
243 |
- 使用Sealos[一键部署](https://github.com/binary-husky/gpt_academic/issues/993)。
|
244 |
- 使用WSL2(Windows Subsystem for Linux 子系统)。请访问[部署wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
|
245 |
- 如何在二级网址(如`http://localhost/subpath`)下运行。请访问[FastAPI运行说明](docs/WithFastapi.md)
|
246 |
|
247 |
+
<br><br>
|
248 |
|
249 |
# Advanced Usage
|
250 |
### I:自定义新的便捷按钮(学术快捷键)
|
251 |
|
252 |
+
任意文本编辑器打开`core_functional.py`,添加如下条目,然后重启程序。(如果按钮已存在,那么可以直接修改(前缀、后缀都已支持热修改),无需重启程序即可生效。)
|
253 |
例如
|
254 |
|
255 |
```python
|
|
|
271 |
本项目的插件编写、调试难度很低,只要您具备一定的python基础知识,就可以仿照我们提供的模板实现自己的插件功能。
|
272 |
详情请参考[函数插件指南](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)。
|
273 |
|
274 |
+
<br><br>
|
275 |
|
276 |
# Updates
|
277 |
### I:动态
|
|
|
371 |
|
372 |
- 已知问题
|
373 |
- 某些浏览器翻译插件干扰此软件前端的运行
|
374 |
+
- 官方Gradio目前有很多兼容性问题,请**务必使用`requirement.txt`安装Gradio**
|
375 |
|
376 |
### III:主题
|
377 |
可以通过修改`THEME`选项(config.py)变更主题
|
|
|
382 |
|
383 |
1. `master` 分支: 主分支,稳定版
|
384 |
2. `frontier` 分支: 开发分支,测试版
|
385 |
+
3. 如何[接入其他大模型](request_llms/README.md)
|
386 |
+
4. 访问GPT-Academic的[在线服务并支持我们](https://github.com/binary-husky/gpt_academic/wiki/online)
|
387 |
|
388 |
### V:参考与学习
|
389 |
|
app.py
CHANGED
@@ -1,6 +1,17 @@
|
|
1 |
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def main():
|
6 |
import subprocess, sys
|
@@ -10,7 +21,7 @@ def main():
|
|
10 |
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
11 |
from request_llms.bridge_all import predict
|
12 |
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
13 |
-
# 建议您复制一个config_private.py放自己的秘密, 如API
|
14 |
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
15 |
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
16 |
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME')
|
@@ -20,21 +31,11 @@ def main():
|
|
20 |
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
21 |
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
22 |
from check_proxy import get_current_version
|
23 |
-
from themes.theme import adjust_theme, advanced_css, theme_declaration
|
24 |
-
|
|
|
25 |
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
26 |
-
|
27 |
-
description += "感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors)."
|
28 |
-
description += "</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki), "
|
29 |
-
description += "如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues)."
|
30 |
-
description += "</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交"
|
31 |
-
description += "</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮"
|
32 |
-
description += "</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮"
|
33 |
-
description += "</br></br>虚空终端使用说明: 点击虚空终端, 然后根据提示输入指令, 再次点击虚空终端"
|
34 |
-
description += "</br></br>如何保存对话: 点击保存当前的对话按钮"
|
35 |
-
description += "</br></br>如何语音对话: 请阅读Wiki"
|
36 |
-
description += "</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"
|
37 |
-
|
38 |
# 问询记录, python 版本建议3.9+(越新越好)
|
39 |
import logging, uuid
|
40 |
os.makedirs(PATH_LOGGING, exist_ok=True)
|
@@ -88,7 +89,7 @@ def main():
|
|
88 |
with gr_L2(scale=1, elem_id="gpt-panel"):
|
89 |
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
90 |
with gr.Row():
|
91 |
-
txt = gr.Textbox(show_label=False, lines=2, placeholder="输入问题或API
|
92 |
with gr.Row():
|
93 |
submitBtn = gr.Button("提交", elem_id="elem_submit", variant="primary")
|
94 |
with gr.Row():
|
@@ -149,7 +150,7 @@ def main():
|
|
149 |
with gr.Row():
|
150 |
with gr.Tab("上传文件", elem_id="interact-panel"):
|
151 |
gr.Markdown("请上传本地文件/压缩包供“函数插件区”功能调用。请注意: 上传文件后会自动把输入区修改为相应路径。")
|
152 |
-
file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple")
|
153 |
|
154 |
with gr.Tab("更换模型 & Prompt", elem_id="interact-panel"):
|
155 |
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
@@ -165,39 +166,24 @@ def main():
|
|
165 |
checkboxes_2 = gr.CheckboxGroup(["自定义菜单"],
|
166 |
value=[], label="显示/隐藏自定义菜单", elem_id='cbs').style(container=False)
|
167 |
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
|
168 |
-
dark_mode_btn.click(None, None, None, _js=
|
169 |
-
if (document.querySelectorAll('.dark').length) {
|
170 |
-
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
|
171 |
-
} else {
|
172 |
-
document.querySelector('body').classList.add('dark');
|
173 |
-
}
|
174 |
-
}""",
|
175 |
)
|
176 |
with gr.Tab("帮助", elem_id="interact-panel"):
|
177 |
-
gr.Markdown(
|
178 |
|
179 |
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_input_secondary:
|
180 |
with gr.Accordion("浮动输入区", open=True, elem_id="input-panel2"):
|
181 |
with gr.Row() as row:
|
182 |
row.style(equal_height=True)
|
183 |
with gr.Column(scale=10):
|
184 |
-
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.",
|
|
|
185 |
with gr.Column(scale=1, min_width=40):
|
186 |
submitBtn2 = gr.Button("提交", variant="primary"); submitBtn2.style(size="sm")
|
187 |
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn2.style(size="sm")
|
188 |
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn2.style(size="sm")
|
189 |
clearBtn2 = gr.Button("清除", variant="secondary", visible=False); clearBtn2.style(size="sm")
|
190 |
|
191 |
-
def to_cookie_str(d):
|
192 |
-
# Pickle the dictionary and encode it as a string
|
193 |
-
pickled_dict = pickle.dumps(d)
|
194 |
-
cookie_value = base64.b64encode(pickled_dict).decode('utf-8')
|
195 |
-
return cookie_value
|
196 |
-
|
197 |
-
def from_cookie_str(c):
|
198 |
-
# Decode the base64-encoded string and unpickle it into a dictionary
|
199 |
-
pickled_dict = base64.b64decode(c.encode('utf-8'))
|
200 |
-
return pickle.loads(pickled_dict)
|
201 |
|
202 |
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_customize:
|
203 |
with gr.Accordion("自定义菜单", open=True, elem_id="edit-panel"):
|
@@ -229,11 +215,11 @@ def main():
|
|
229 |
else:
|
230 |
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=True, value=basic_fn_title)})
|
231 |
ret.update({cookies: cookies_})
|
232 |
-
try: persistent_cookie_ = from_cookie_str(persistent_cookie_)
|
233 |
except: persistent_cookie_ = {}
|
234 |
-
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_
|
235 |
-
persistent_cookie_ = to_cookie_str(persistent_cookie_)
|
236 |
-
ret.update({persistent_cookie: persistent_cookie_})
|
237 |
return ret
|
238 |
|
239 |
def reflesh_btn(persistent_cookie_, cookies_):
|
@@ -254,10 +240,11 @@ def main():
|
|
254 |
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
255 |
return ret
|
256 |
|
257 |
-
basic_fn_load.click(reflesh_btn, [persistent_cookie, cookies],[cookies, *customize_btns.values(), *predefined_btns.values()])
|
258 |
h = basic_fn_confirm.click(assign_btn, [persistent_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
259 |
[persistent_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
|
260 |
-
|
|
|
261 |
|
262 |
# 功能区显示开关与功能区的互动
|
263 |
def fn_area_visibility(a):
|
@@ -307,8 +294,8 @@ def main():
|
|
307 |
click_handle = btn.click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(btn.value)], outputs=output_combo)
|
308 |
cancel_handles.append(click_handle)
|
309 |
# 文件上传区,接收文件后与chatbot的互动
|
310 |
-
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies])
|
311 |
-
file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies])
|
312 |
# 函数插件-固定按钮区
|
313 |
for k in plugins:
|
314 |
if not plugins[k].get("AsButton", True): continue
|
@@ -344,18 +331,7 @@ def main():
|
|
344 |
None,
|
345 |
[secret_css],
|
346 |
None,
|
347 |
-
_js=
|
348 |
-
var existingStyles = document.querySelectorAll("style[data-loaded-css]");
|
349 |
-
for (var i = 0; i < existingStyles.length; i++) {
|
350 |
-
var style = existingStyles[i];
|
351 |
-
style.parentNode.removeChild(style);
|
352 |
-
}
|
353 |
-
var styleElement = document.createElement('style');
|
354 |
-
styleElement.setAttribute('data-loaded-css', css);
|
355 |
-
styleElement.innerHTML = css;
|
356 |
-
document.head.appendChild(styleElement);
|
357 |
-
}
|
358 |
-
"""
|
359 |
)
|
360 |
# 随变按钮的回调函数注册
|
361 |
def route(request: gr.Request, k, *args, **kwargs):
|
@@ -387,27 +363,10 @@ def main():
|
|
387 |
rad.feed(cookies['uuid'].hex, audio)
|
388 |
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
389 |
|
390 |
-
|
391 |
-
# 为每一位访问的用户赋予一个独一无二的uuid编码
|
392 |
-
cookies.update({'uuid': uuid.uuid4()})
|
393 |
-
return cookies
|
394 |
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
|
395 |
-
darkmode_js =
|
396 |
-
|
397 |
-
if (document.querySelectorAll('.dark').length) {
|
398 |
-
if (!dark){
|
399 |
-
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
|
400 |
-
}
|
401 |
-
} else {
|
402 |
-
if (dark){
|
403 |
-
document.querySelector('body').classList.add('dark');
|
404 |
-
}
|
405 |
-
}
|
406 |
-
}"""
|
407 |
-
load_cookie_js = """(persistent_cookie) => {
|
408 |
-
return getCookie("persistent_cookie");
|
409 |
-
}"""
|
410 |
-
demo.load(None, inputs=None, outputs=[persistent_cookie], _js=load_cookie_js)
|
411 |
demo.load(None, inputs=[dark_mode], outputs=None, _js=darkmode_js) # 配置暗色主题或亮色主题
|
412 |
demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
|
413 |
|
@@ -418,8 +377,18 @@ def main():
|
|
418 |
if DARK_MODE: print(f"\t「暗色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
419 |
else: print(f"\t「亮色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", share=False, favicon_path="docs/logo.png", blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
|
422 |
|
|
|
423 |
# 如果需要在二级路径下运行
|
424 |
# CUSTOM_PATH = get_conf('CUSTOM_PATH')
|
425 |
# if CUSTOM_PATH != "/":
|
|
|
1 |
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
2 |
+
|
3 |
+
help_menu_description = \
|
4 |
+
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
|
5 |
+
感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors).
|
6 |
+
</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki),
|
7 |
+
如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues).
|
8 |
+
</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交
|
9 |
+
</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮
|
10 |
+
</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮
|
11 |
+
</br></br>虚空终端使用说明: 点击虚空终端, 然后根据提示输入指令, 再次点击虚空终端
|
12 |
+
</br></br>如何保存对话: 点击保存当前的对话按钮
|
13 |
+
</br></br>如何语音对话: 请阅读Wiki
|
14 |
+
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
15 |
|
16 |
def main():
|
17 |
import subprocess, sys
|
|
|
21 |
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
22 |
from request_llms.bridge_all import predict
|
23 |
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
24 |
+
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址
|
25 |
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
26 |
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
27 |
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME')
|
|
|
31 |
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
32 |
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
33 |
from check_proxy import get_current_version
|
34 |
+
from themes.theme import adjust_theme, advanced_css, theme_declaration
|
35 |
+
from themes.theme import js_code_for_css_changing, js_code_for_darkmode_init, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
36 |
+
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, init_cookie
|
37 |
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
38 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# 问询记录, python 版本建议3.9+(越新越好)
|
40 |
import logging, uuid
|
41 |
os.makedirs(PATH_LOGGING, exist_ok=True)
|
|
|
89 |
with gr_L2(scale=1, elem_id="gpt-panel"):
|
90 |
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
91 |
with gr.Row():
|
92 |
+
txt = gr.Textbox(show_label=False, lines=2, placeholder="输入问题或API密钥,输入多个密钥时,用英文逗号间隔。支持多个OpenAI密钥共存。").style(container=False)
|
93 |
with gr.Row():
|
94 |
submitBtn = gr.Button("提交", elem_id="elem_submit", variant="primary")
|
95 |
with gr.Row():
|
|
|
150 |
with gr.Row():
|
151 |
with gr.Tab("上传文件", elem_id="interact-panel"):
|
152 |
gr.Markdown("请上传本地文件/压缩包供“函数插件区”功能调用。请注意: 上传文件后会自动把输入区修改为相应路径。")
|
153 |
+
file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload_float")
|
154 |
|
155 |
with gr.Tab("更换模型 & Prompt", elem_id="interact-panel"):
|
156 |
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
|
|
166 |
checkboxes_2 = gr.CheckboxGroup(["自定义菜单"],
|
167 |
value=[], label="显示/隐藏自定义菜单", elem_id='cbs').style(container=False)
|
168 |
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
|
169 |
+
dark_mode_btn.click(None, None, None, _js=js_code_for_toggle_darkmode,
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
)
|
171 |
with gr.Tab("帮助", elem_id="interact-panel"):
|
172 |
+
gr.Markdown(help_menu_description)
|
173 |
|
174 |
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_input_secondary:
|
175 |
with gr.Accordion("浮动输入区", open=True, elem_id="input-panel2"):
|
176 |
with gr.Row() as row:
|
177 |
row.style(equal_height=True)
|
178 |
with gr.Column(scale=10):
|
179 |
+
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.",
|
180 |
+
elem_id='user_input_float', lines=8, label="输入区2").style(container=False)
|
181 |
with gr.Column(scale=1, min_width=40):
|
182 |
submitBtn2 = gr.Button("提交", variant="primary"); submitBtn2.style(size="sm")
|
183 |
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn2.style(size="sm")
|
184 |
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn2.style(size="sm")
|
185 |
clearBtn2 = gr.Button("清除", variant="secondary", visible=False); clearBtn2.style(size="sm")
|
186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_customize:
|
189 |
with gr.Accordion("自定义菜单", open=True, elem_id="edit-panel"):
|
|
|
215 |
else:
|
216 |
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=True, value=basic_fn_title)})
|
217 |
ret.update({cookies: cookies_})
|
218 |
+
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
219 |
except: persistent_cookie_ = {}
|
220 |
+
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
|
221 |
+
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
|
222 |
+
ret.update({persistent_cookie: persistent_cookie_}) # write persistent cookie
|
223 |
return ret
|
224 |
|
225 |
def reflesh_btn(persistent_cookie_, cookies_):
|
|
|
240 |
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
241 |
return ret
|
242 |
|
243 |
+
basic_fn_load.click(reflesh_btn, [persistent_cookie, cookies], [cookies, *customize_btns.values(), *predefined_btns.values()])
|
244 |
h = basic_fn_confirm.click(assign_btn, [persistent_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
245 |
[persistent_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
|
246 |
+
# save persistent cookie
|
247 |
+
h.then(None, [persistent_cookie], None, _js="""(persistent_cookie)=>{setCookie("persistent_cookie", persistent_cookie, 5);}""")
|
248 |
|
249 |
# 功能区显示开关与功能区的互动
|
250 |
def fn_area_visibility(a):
|
|
|
294 |
click_handle = btn.click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(btn.value)], outputs=output_combo)
|
295 |
cancel_handles.append(click_handle)
|
296 |
# 文件上传区,接收文件后与chatbot的互动
|
297 |
+
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
|
298 |
+
file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
|
299 |
# 函数插件-固定按钮区
|
300 |
for k in plugins:
|
301 |
if not plugins[k].get("AsButton", True): continue
|
|
|
331 |
None,
|
332 |
[secret_css],
|
333 |
None,
|
334 |
+
_js=js_code_for_css_changing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
)
|
336 |
# 随变按钮的回调函数注册
|
337 |
def route(request: gr.Request, k, *args, **kwargs):
|
|
|
363 |
rad.feed(cookies['uuid'].hex, audio)
|
364 |
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
365 |
|
366 |
+
|
|
|
|
|
|
|
367 |
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
|
368 |
+
darkmode_js = js_code_for_darkmode_init
|
369 |
+
demo.load(None, inputs=None, outputs=[persistent_cookie], _js=js_code_for_persistent_cookie_init)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
demo.load(None, inputs=[dark_mode], outputs=None, _js=darkmode_js) # 配置暗色主题或亮色主题
|
371 |
demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
|
372 |
|
|
|
377 |
if DARK_MODE: print(f"\t「暗色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
378 |
else: print(f"\t「亮色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
379 |
|
380 |
+
def auto_updates(): time.sleep(0); auto_update()
|
381 |
+
def open_browser(): time.sleep(2); webbrowser.open_new_tab(f"http://localhost:{PORT}")
|
382 |
+
def warm_up_mods(): time.sleep(6); warm_up_modules()
|
383 |
+
|
384 |
+
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
|
385 |
+
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
386 |
+
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
387 |
+
|
388 |
+
run_delayed_tasks()
|
389 |
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", share=False, favicon_path="docs/logo.png", blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
|
390 |
|
391 |
+
|
392 |
# 如果需要在二级路径下运行
|
393 |
# CUSTOM_PATH = get_conf('CUSTOM_PATH')
|
394 |
# if CUSTOM_PATH != "/":
|
check_proxy.py
CHANGED
@@ -159,7 +159,15 @@ def warm_up_modules():
|
|
159 |
enc.encode("模块预热", disallowed_special=())
|
160 |
enc = model_info["gpt-4"]['tokenizer']
|
161 |
enc.encode("模块预热", disallowed_special=())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
|
|
163 |
if __name__ == '__main__':
|
164 |
import os
|
165 |
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
|
|
159 |
enc.encode("模块预热", disallowed_special=())
|
160 |
enc = model_info["gpt-4"]['tokenizer']
|
161 |
enc.encode("模块预热", disallowed_special=())
|
162 |
+
|
163 |
+
def warm_up_vectordb():
|
164 |
+
print('正在执行一些模块的预热 ...')
|
165 |
+
from toolbox import ProxyNetworkActivate
|
166 |
+
with ProxyNetworkActivate("Warmup_Modules"):
|
167 |
+
import nltk
|
168 |
+
with ProxyNetworkActivate("Warmup_Modules"): nltk.download("punkt")
|
169 |
|
170 |
+
|
171 |
if __name__ == '__main__':
|
172 |
import os
|
173 |
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
config.py
CHANGED
@@ -19,13 +19,13 @@ API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗
|
|
19 |
USE_PROXY = False
|
20 |
if USE_PROXY:
|
21 |
"""
|
|
|
22 |
填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
|
23 |
<配置教程&视频教程> https://github.com/binary-husky/gpt_academic/issues/1>
|
24 |
[协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
|
25 |
-
[地址]
|
26 |
[端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
|
27 |
"""
|
28 |
-
# 代理网络的地址,打开你的*学*网软件查看代理的协议(socks5h / http)、地址(localhost)和端口(11284)
|
29 |
proxies = {
|
30 |
# [协议]:// [地址] :[端口]
|
31 |
"http": "socks5h://localhost:11284", # 再例如 "http": "http://127.0.0.1:7890",
|
@@ -70,7 +70,7 @@ LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下
|
|
70 |
|
71 |
|
72 |
# 暗色模式 / 亮色模式
|
73 |
-
DARK_MODE =
|
74 |
|
75 |
|
76 |
# 发送请求到OpenAI后,等待多久判定为超时
|
@@ -99,14 +99,25 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-1106","gpt-4-1106-preview","gpt-4-vision-prev
|
|
99 |
"api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
|
100 |
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
|
101 |
"chatglm3", "moss", "claude-2"]
|
102 |
-
# P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
|
103 |
-
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
|
|
|
104 |
|
105 |
|
106 |
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
107 |
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
108 |
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
# 百度千帆(LLM_MODEL="qianfan")
|
111 |
BAIDU_CLOUD_API_KEY = ''
|
112 |
BAIDU_CLOUD_SECRET_KEY = ''
|
@@ -121,7 +132,6 @@ CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
|
|
121 |
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
122 |
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
123 |
|
124 |
-
|
125 |
# 设置gradio的并行线程数(不需要修改)
|
126 |
CONCURRENT_COUNT = 100
|
127 |
|
@@ -239,6 +249,10 @@ WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
|
239 |
BLOCK_INVALID_APIKEY = False
|
240 |
|
241 |
|
|
|
|
|
|
|
|
|
242 |
# 自定义按钮的最大数量限制
|
243 |
NUM_CUSTOM_BASIC_BTN = 4
|
244 |
|
@@ -282,6 +296,9 @@ NUM_CUSTOM_BASIC_BTN = 4
|
|
282 |
│ ├── ZHIPUAI_API_KEY
|
283 |
│ └── ZHIPUAI_MODEL
|
284 |
│
|
|
|
|
|
|
|
285 |
└── "newbing" Newbing接口不再稳定,不推荐使用
|
286 |
├── NEWBING_STYLE
|
287 |
└── NEWBING_COOKIES
|
@@ -298,7 +315,7 @@ NUM_CUSTOM_BASIC_BTN = 4
|
|
298 |
├── "jittorllms_pangualpha"
|
299 |
├── "jittorllms_llama"
|
300 |
├── "deepseekcoder"
|
301 |
-
├── "qwen"
|
302 |
├── RWKV的支持见Wiki
|
303 |
└── "llama2"
|
304 |
|
|
|
19 |
USE_PROXY = False
|
20 |
if USE_PROXY:
|
21 |
"""
|
22 |
+
代理网络的地址,打开你的代理软件查看代理协议(socks5h / http)、地址(localhost)和端口(11284)
|
23 |
填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
|
24 |
<配置教程&视频教程> https://github.com/binary-husky/gpt_academic/issues/1>
|
25 |
[协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
|
26 |
+
[地址] 填localhost或者127.0.0.1(localhost意思是代理软件安装在本机上)
|
27 |
[端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
|
28 |
"""
|
|
|
29 |
proxies = {
|
30 |
# [协议]:// [地址] :[端口]
|
31 |
"http": "socks5h://localhost:11284", # 再例如 "http": "http://127.0.0.1:7890",
|
|
|
70 |
|
71 |
|
72 |
# 暗色模式 / 亮色模式
|
73 |
+
DARK_MODE = False
|
74 |
|
75 |
|
76 |
# 发送请求到OpenAI后,等待多久判定为超时
|
|
|
99 |
"api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
|
100 |
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
|
101 |
"chatglm3", "moss", "claude-2"]
|
102 |
+
# P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
|
103 |
+
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
|
104 |
+
# “qwen-turbo", "qwen-plus", "qwen-max"]
|
105 |
|
106 |
|
107 |
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
108 |
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
109 |
|
110 |
|
111 |
+
# 选择本地模型变体(只有当AVAIL_LLM_MODELS包含了对应本地模型时,才会起作用)
|
112 |
+
# 如果你选择Qwen系列的模型,那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型
|
113 |
+
# 也可以是具体的模型路径
|
114 |
+
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
|
115 |
+
|
116 |
+
|
117 |
+
# 接入通义千问在线大模型 https://dashscope.console.aliyun.com/
|
118 |
+
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
119 |
+
|
120 |
+
|
121 |
# 百度千帆(LLM_MODEL="qianfan")
|
122 |
BAIDU_CLOUD_API_KEY = ''
|
123 |
BAIDU_CLOUD_SECRET_KEY = ''
|
|
|
132 |
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
133 |
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
134 |
|
|
|
135 |
# 设置gradio的并行线程数(不需要修改)
|
136 |
CONCURRENT_COUNT = 100
|
137 |
|
|
|
249 |
BLOCK_INVALID_APIKEY = False
|
250 |
|
251 |
|
252 |
+
# 启用插件热加载
|
253 |
+
PLUGIN_HOT_RELOAD = False
|
254 |
+
|
255 |
+
|
256 |
# 自定义按钮的最大数量限制
|
257 |
NUM_CUSTOM_BASIC_BTN = 4
|
258 |
|
|
|
296 |
│ ├── ZHIPUAI_API_KEY
|
297 |
│ └── ZHIPUAI_MODEL
|
298 |
│
|
299 |
+
├── "qwen-turbo" 等通义千问大模型
|
300 |
+
│ └── DASHSCOPE_API_KEY
|
301 |
+
│
|
302 |
└── "newbing" Newbing接口不再稳定,不推荐使用
|
303 |
├── NEWBING_STYLE
|
304 |
└── NEWBING_COOKIES
|
|
|
315 |
├── "jittorllms_pangualpha"
|
316 |
├── "jittorllms_llama"
|
317 |
├── "deepseekcoder"
|
318 |
+
├── "qwen-local"
|
319 |
├── RWKV的支持见Wiki
|
320 |
└── "llama2"
|
321 |
|
crazy_functional.py
CHANGED
@@ -345,7 +345,7 @@ def get_crazy_functions():
|
|
345 |
"Color": "stop",
|
346 |
"AsButton": False,
|
347 |
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
348 |
-
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&
|
349 |
"Function": HotReload(同时问询_指定模型)
|
350 |
},
|
351 |
})
|
@@ -354,9 +354,9 @@ def get_crazy_functions():
|
|
354 |
print('Load function plugin failed')
|
355 |
|
356 |
try:
|
357 |
-
from crazy_functions.图片生成 import 图片生成_DALLE2, 图片生成_DALLE3
|
358 |
function_plugins.update({
|
359 |
-
"图片生成_DALLE2 (先切换模型到
|
360 |
"Group": "对话",
|
361 |
"Color": "stop",
|
362 |
"AsButton": False,
|
@@ -367,16 +367,26 @@ def get_crazy_functions():
|
|
367 |
},
|
368 |
})
|
369 |
function_plugins.update({
|
370 |
-
"图片生成_DALLE3 (先切换模型到
|
371 |
"Group": "对话",
|
372 |
"Color": "stop",
|
373 |
"AsButton": False,
|
374 |
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
375 |
-
"ArgsReminder": "
|
376 |
"Info": "使用DALLE3生成图片 | 输入参数字符串,提供图像的内容",
|
377 |
"Function": HotReload(图片生成_DALLE3)
|
378 |
},
|
379 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
except:
|
381 |
print(trimmed_format_exc())
|
382 |
print('Load function plugin failed')
|
@@ -430,7 +440,7 @@ def get_crazy_functions():
|
|
430 |
print('Load function plugin failed')
|
431 |
|
432 |
try:
|
433 |
-
from crazy_functions
|
434 |
function_plugins.update({
|
435 |
"构建知识库(先上传文件素材,再运行此插件)": {
|
436 |
"Group": "对话",
|
@@ -438,7 +448,7 @@ def get_crazy_functions():
|
|
438 |
"AsButton": False,
|
439 |
"AdvancedArgs": True,
|
440 |
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
|
441 |
-
"Function": HotReload(
|
442 |
}
|
443 |
})
|
444 |
except:
|
@@ -446,9 +456,9 @@ def get_crazy_functions():
|
|
446 |
print('Load function plugin failed')
|
447 |
|
448 |
try:
|
449 |
-
from crazy_functions
|
450 |
function_plugins.update({
|
451 |
-
"
|
452 |
"Group": "对话",
|
453 |
"Color": "stop",
|
454 |
"AsButton": False,
|
@@ -489,7 +499,7 @@ def get_crazy_functions():
|
|
489 |
})
|
490 |
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
|
491 |
function_plugins.update({
|
492 |
-
"
|
493 |
"Group": "学术",
|
494 |
"Color": "stop",
|
495 |
"AsButton": False,
|
@@ -580,6 +590,20 @@ def get_crazy_functions():
|
|
580 |
print(trimmed_format_exc())
|
581 |
print('Load function plugin failed')
|
582 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
583 |
# try:
|
584 |
# from crazy_functions.chatglm微调工具 import 微调数据集生成
|
585 |
# function_plugins.update({
|
|
|
345 |
"Color": "stop",
|
346 |
"AsButton": False,
|
347 |
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
348 |
+
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
|
349 |
"Function": HotReload(同时问询_指定模型)
|
350 |
},
|
351 |
})
|
|
|
354 |
print('Load function plugin failed')
|
355 |
|
356 |
try:
|
357 |
+
from crazy_functions.图片生成 import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
|
358 |
function_plugins.update({
|
359 |
+
"图片生成_DALLE2 (先切换模型到gpt-*)": {
|
360 |
"Group": "对话",
|
361 |
"Color": "stop",
|
362 |
"AsButton": False,
|
|
|
367 |
},
|
368 |
})
|
369 |
function_plugins.update({
|
370 |
+
"图片生成_DALLE3 (先切换模型到gpt-*)": {
|
371 |
"Group": "对话",
|
372 |
"Color": "stop",
|
373 |
"AsButton": False,
|
374 |
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
375 |
+
"ArgsReminder": "在这里输入自定义参数「分辨率-质量(可选)-风格(可选)」, 参数示例「1024x1024-hd-vivid」 || 分辨率支持 「1024x1024」(默认) /「1792x1024」/「1024x1792」 || 质量支持 「-standard」(默认) /「-hd」 || 风格支持 「-vivid」(默认) /「-natural」", # 高级参数输入区的显示提示
|
376 |
"Info": "使用DALLE3生成图片 | 输入参数字符串,提供图像的内容",
|
377 |
"Function": HotReload(图片生成_DALLE3)
|
378 |
},
|
379 |
})
|
380 |
+
function_plugins.update({
|
381 |
+
"图片修改_DALLE2 (先切换模型到gpt-*)": {
|
382 |
+
"Group": "对话",
|
383 |
+
"Color": "stop",
|
384 |
+
"AsButton": False,
|
385 |
+
"AdvancedArgs": False, # 调用时,唤起高级参数输入区(默认False)
|
386 |
+
# "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
|
387 |
+
"Function": HotReload(图片修改_DALLE2)
|
388 |
+
},
|
389 |
+
})
|
390 |
except:
|
391 |
print(trimmed_format_exc())
|
392 |
print('Load function plugin failed')
|
|
|
440 |
print('Load function plugin failed')
|
441 |
|
442 |
try:
|
443 |
+
from crazy_functions.知识库问答 import 知识库文件注入
|
444 |
function_plugins.update({
|
445 |
"构建知识库(先上传文件素材,再运行此插件)": {
|
446 |
"Group": "对话",
|
|
|
448 |
"AsButton": False,
|
449 |
"AdvancedArgs": True,
|
450 |
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
|
451 |
+
"Function": HotReload(知识库文件注入)
|
452 |
}
|
453 |
})
|
454 |
except:
|
|
|
456 |
print('Load function plugin failed')
|
457 |
|
458 |
try:
|
459 |
+
from crazy_functions.知识库问答 import 读取知识库作答
|
460 |
function_plugins.update({
|
461 |
+
"知识库文件注入(构建知识库后,再运行此插件)": {
|
462 |
"Group": "对话",
|
463 |
"Color": "stop",
|
464 |
"AsButton": False,
|
|
|
499 |
})
|
500 |
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
|
501 |
function_plugins.update({
|
502 |
+
"Arxiv论文精细翻译(输入arxivID)[需Latex]": {
|
503 |
"Group": "学术",
|
504 |
"Color": "stop",
|
505 |
"AsButton": False,
|
|
|
590 |
print(trimmed_format_exc())
|
591 |
print('Load function plugin failed')
|
592 |
|
593 |
+
try:
|
594 |
+
from crazy_functions.互动小游戏 import 随机小游戏
|
595 |
+
function_plugins.update({
|
596 |
+
"随机互动小游戏(仅供测试)": {
|
597 |
+
"Group": "智能体",
|
598 |
+
"Color": "stop",
|
599 |
+
"AsButton": False,
|
600 |
+
"Function": HotReload(随机小游戏)
|
601 |
+
}
|
602 |
+
})
|
603 |
+
except:
|
604 |
+
print(trimmed_format_exc())
|
605 |
+
print('Load function plugin failed')
|
606 |
+
|
607 |
# try:
|
608 |
# from crazy_functions.chatglm微调工具 import 微调数据集生成
|
609 |
# function_plugins.update({
|
crazy_functions/Latex全文润色.py
CHANGED
@@ -26,8 +26,8 @@ class PaperFileGroup():
|
|
26 |
self.sp_file_index.append(index)
|
27 |
self.sp_file_tag.append(self.file_paths[index])
|
28 |
else:
|
29 |
-
from .
|
30 |
-
segments =
|
31 |
for j, segment in enumerate(segments):
|
32 |
self.sp_file_contents.append(segment)
|
33 |
self.sp_file_index.append(index)
|
|
|
26 |
self.sp_file_index.append(index)
|
27 |
self.sp_file_tag.append(self.file_paths[index])
|
28 |
else:
|
29 |
+
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
30 |
+
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
|
31 |
for j, segment in enumerate(segments):
|
32 |
self.sp_file_contents.append(segment)
|
33 |
self.sp_file_index.append(index)
|
crazy_functions/Latex全文翻译.py
CHANGED
@@ -26,8 +26,8 @@ class PaperFileGroup():
|
|
26 |
self.sp_file_index.append(index)
|
27 |
self.sp_file_tag.append(self.file_paths[index])
|
28 |
else:
|
29 |
-
from .
|
30 |
-
segments =
|
31 |
for j, segment in enumerate(segments):
|
32 |
self.sp_file_contents.append(segment)
|
33 |
self.sp_file_index.append(index)
|
|
|
26 |
self.sp_file_index.append(index)
|
27 |
self.sp_file_tag.append(self.file_paths[index])
|
28 |
else:
|
29 |
+
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
30 |
+
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
|
31 |
for j, segment in enumerate(segments):
|
32 |
self.sp_file_contents.append(segment)
|
33 |
self.sp_file_index.append(index)
|
crazy_functions/Latex输出PDF结果.py
CHANGED
@@ -88,6 +88,9 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
|
88 |
target_file = pj(translation_dir, 'translate_zh.pdf')
|
89 |
if os.path.exists(target_file):
|
90 |
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
|
|
|
|
|
|
|
91 |
return target_file
|
92 |
return False
|
93 |
def is_float(s):
|
|
|
88 |
target_file = pj(translation_dir, 'translate_zh.pdf')
|
89 |
if os.path.exists(target_file):
|
90 |
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
|
91 |
+
target_file_compare = pj(translation_dir, 'comparison.pdf')
|
92 |
+
if os.path.exists(target_file_compare):
|
93 |
+
promote_file_to_downloadzone(target_file_compare, rename_file=None, chatbot=chatbot)
|
94 |
return target_file
|
95 |
return False
|
96 |
def is_float(s):
|
crazy_functions/crazy_utils.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token
|
2 |
import threading
|
3 |
import os
|
4 |
import logging
|
@@ -139,6 +139,8 @@ def can_multi_process(llm):
|
|
139 |
if llm.startswith('gpt-'): return True
|
140 |
if llm.startswith('api2d-'): return True
|
141 |
if llm.startswith('azure-'): return True
|
|
|
|
|
142 |
return False
|
143 |
|
144 |
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
@@ -312,95 +314,6 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|
312 |
return gpt_response_collection
|
313 |
|
314 |
|
315 |
-
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
316 |
-
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
317 |
-
if get_token_fn(txt_tocut) <= limit:
|
318 |
-
return [txt_tocut]
|
319 |
-
else:
|
320 |
-
lines = txt_tocut.split('\n')
|
321 |
-
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
322 |
-
estimated_line_cut = int(estimated_line_cut)
|
323 |
-
for cnt in reversed(range(estimated_line_cut)):
|
324 |
-
if must_break_at_empty_line:
|
325 |
-
if lines[cnt] != "":
|
326 |
-
continue
|
327 |
-
print(cnt)
|
328 |
-
prev = "\n".join(lines[:cnt])
|
329 |
-
post = "\n".join(lines[cnt:])
|
330 |
-
if get_token_fn(prev) < limit:
|
331 |
-
break
|
332 |
-
if cnt == 0:
|
333 |
-
raise RuntimeError("存在一行极长的文本!")
|
334 |
-
# print(len(post))
|
335 |
-
# 列表递归接龙
|
336 |
-
result = [prev]
|
337 |
-
result.extend(cut(post, must_break_at_empty_line))
|
338 |
-
return result
|
339 |
-
try:
|
340 |
-
return cut(txt, must_break_at_empty_line=True)
|
341 |
-
except RuntimeError:
|
342 |
-
return cut(txt, must_break_at_empty_line=False)
|
343 |
-
|
344 |
-
|
345 |
-
def force_breakdown(txt, limit, get_token_fn):
|
346 |
-
"""
|
347 |
-
当无法用标点、空行分割时,我们用最暴力的方法切割
|
348 |
-
"""
|
349 |
-
for i in reversed(range(len(txt))):
|
350 |
-
if get_token_fn(txt[:i]) < limit:
|
351 |
-
return txt[:i], txt[i:]
|
352 |
-
return "Tiktoken未知错误", "Tiktoken未知错误"
|
353 |
-
|
354 |
-
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
355 |
-
# 递归
|
356 |
-
def cut(txt_tocut, must_break_at_empty_line, break_anyway=False):
|
357 |
-
if get_token_fn(txt_tocut) <= limit:
|
358 |
-
return [txt_tocut]
|
359 |
-
else:
|
360 |
-
lines = txt_tocut.split('\n')
|
361 |
-
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
362 |
-
estimated_line_cut = int(estimated_line_cut)
|
363 |
-
cnt = 0
|
364 |
-
for cnt in reversed(range(estimated_line_cut)):
|
365 |
-
if must_break_at_empty_line:
|
366 |
-
if lines[cnt] != "":
|
367 |
-
continue
|
368 |
-
prev = "\n".join(lines[:cnt])
|
369 |
-
post = "\n".join(lines[cnt:])
|
370 |
-
if get_token_fn(prev) < limit:
|
371 |
-
break
|
372 |
-
if cnt == 0:
|
373 |
-
if break_anyway:
|
374 |
-
prev, post = force_breakdown(txt_tocut, limit, get_token_fn)
|
375 |
-
else:
|
376 |
-
raise RuntimeError(f"存在一行极长的文本!{txt_tocut}")
|
377 |
-
# print(len(post))
|
378 |
-
# 列表递归接龙
|
379 |
-
result = [prev]
|
380 |
-
result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway))
|
381 |
-
return result
|
382 |
-
try:
|
383 |
-
# 第1次尝试,将双空行(\n\n)作为切分点
|
384 |
-
return cut(txt, must_break_at_empty_line=True)
|
385 |
-
except RuntimeError:
|
386 |
-
try:
|
387 |
-
# 第2次尝试,将单空行(\n)作为切分点
|
388 |
-
return cut(txt, must_break_at_empty_line=False)
|
389 |
-
except RuntimeError:
|
390 |
-
try:
|
391 |
-
# 第3次尝试,将英文句号(.)作为切分点
|
392 |
-
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
|
393 |
-
return [r.replace('。\n', '.') for r in res]
|
394 |
-
except RuntimeError as e:
|
395 |
-
try:
|
396 |
-
# 第4次尝试,将中文句号(。)作为切分点
|
397 |
-
res = cut(txt.replace('。', '。。\n'), must_break_at_empty_line=False)
|
398 |
-
return [r.replace('。。\n', '。') for r in res]
|
399 |
-
except RuntimeError as e:
|
400 |
-
# 第5次尝试,没办法了,随便切一下敷衍吧
|
401 |
-
return cut(txt, must_break_at_empty_line=False, break_anyway=True)
|
402 |
-
|
403 |
-
|
404 |
|
405 |
def read_and_clean_pdf_text(fp):
|
406 |
"""
|
@@ -631,90 +544,6 @@ def get_files_from_everything(txt, type): # type='.md'
|
|
631 |
|
632 |
|
633 |
|
634 |
-
|
635 |
-
def Singleton(cls):
|
636 |
-
_instance = {}
|
637 |
-
|
638 |
-
def _singleton(*args, **kargs):
|
639 |
-
if cls not in _instance:
|
640 |
-
_instance[cls] = cls(*args, **kargs)
|
641 |
-
return _instance[cls]
|
642 |
-
|
643 |
-
return _singleton
|
644 |
-
|
645 |
-
|
646 |
-
@Singleton
|
647 |
-
class knowledge_archive_interface():
|
648 |
-
def __init__(self) -> None:
|
649 |
-
self.threadLock = threading.Lock()
|
650 |
-
self.current_id = ""
|
651 |
-
self.kai_path = None
|
652 |
-
self.qa_handle = None
|
653 |
-
self.text2vec_large_chinese = None
|
654 |
-
|
655 |
-
def get_chinese_text2vec(self):
|
656 |
-
if self.text2vec_large_chinese is None:
|
657 |
-
# < -------------------预热文本向量化模组--------------- >
|
658 |
-
from toolbox import ProxyNetworkActivate
|
659 |
-
print('Checking Text2vec ...')
|
660 |
-
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
661 |
-
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
662 |
-
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
663 |
-
|
664 |
-
return self.text2vec_large_chinese
|
665 |
-
|
666 |
-
|
667 |
-
def feed_archive(self, file_manifest, id="default"):
|
668 |
-
self.threadLock.acquire()
|
669 |
-
# import uuid
|
670 |
-
self.current_id = id
|
671 |
-
from zh_langchain import construct_vector_store
|
672 |
-
self.qa_handle, self.kai_path = construct_vector_store(
|
673 |
-
vs_id=self.current_id,
|
674 |
-
files=file_manifest,
|
675 |
-
sentence_size=100,
|
676 |
-
history=[],
|
677 |
-
one_conent="",
|
678 |
-
one_content_segmentation="",
|
679 |
-
text2vec = self.get_chinese_text2vec(),
|
680 |
-
)
|
681 |
-
self.threadLock.release()
|
682 |
-
|
683 |
-
def get_current_archive_id(self):
|
684 |
-
return self.current_id
|
685 |
-
|
686 |
-
def get_loaded_file(self):
|
687 |
-
return self.qa_handle.get_loaded_file()
|
688 |
-
|
689 |
-
def answer_with_archive_by_id(self, txt, id):
|
690 |
-
self.threadLock.acquire()
|
691 |
-
if not self.current_id == id:
|
692 |
-
self.current_id = id
|
693 |
-
from zh_langchain import construct_vector_store
|
694 |
-
self.qa_handle, self.kai_path = construct_vector_store(
|
695 |
-
vs_id=self.current_id,
|
696 |
-
files=[],
|
697 |
-
sentence_size=100,
|
698 |
-
history=[],
|
699 |
-
one_conent="",
|
700 |
-
one_content_segmentation="",
|
701 |
-
text2vec = self.get_chinese_text2vec(),
|
702 |
-
)
|
703 |
-
VECTOR_SEARCH_SCORE_THRESHOLD = 0
|
704 |
-
VECTOR_SEARCH_TOP_K = 4
|
705 |
-
CHUNK_SIZE = 512
|
706 |
-
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
|
707 |
-
query = txt,
|
708 |
-
vs_path = self.kai_path,
|
709 |
-
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
710 |
-
vector_search_top_k=VECTOR_SEARCH_TOP_K,
|
711 |
-
chunk_conent=True,
|
712 |
-
chunk_size=CHUNK_SIZE,
|
713 |
-
text2vec = self.get_chinese_text2vec(),
|
714 |
-
)
|
715 |
-
self.threadLock.release()
|
716 |
-
return resp, prompt
|
717 |
-
|
718 |
@Singleton
|
719 |
class nougat_interface():
|
720 |
def __init__(self):
|
|
|
1 |
+
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
|
2 |
import threading
|
3 |
import os
|
4 |
import logging
|
|
|
139 |
if llm.startswith('gpt-'): return True
|
140 |
if llm.startswith('api2d-'): return True
|
141 |
if llm.startswith('azure-'): return True
|
142 |
+
if llm.startswith('spark'): return True
|
143 |
+
if llm.startswith('zhipuai'): return True
|
144 |
return False
|
145 |
|
146 |
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|
|
314 |
return gpt_response_collection
|
315 |
|
316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
def read_and_clean_pdf_text(fp):
|
319 |
"""
|
|
|
544 |
|
545 |
|
546 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
@Singleton
|
548 |
class nougat_interface():
|
549 |
def __init__(self):
|
crazy_functions/latex_fns/latex_actions.py
CHANGED
@@ -175,7 +175,6 @@ class LatexPaperFileGroup():
|
|
175 |
self.sp_file_contents = []
|
176 |
self.sp_file_index = []
|
177 |
self.sp_file_tag = []
|
178 |
-
|
179 |
# count_token
|
180 |
from request_llms.bridge_all import model_info
|
181 |
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
@@ -192,13 +191,12 @@ class LatexPaperFileGroup():
|
|
192 |
self.sp_file_index.append(index)
|
193 |
self.sp_file_tag.append(self.file_paths[index])
|
194 |
else:
|
195 |
-
from
|
196 |
-
segments =
|
197 |
for j, segment in enumerate(segments):
|
198 |
self.sp_file_contents.append(segment)
|
199 |
self.sp_file_index.append(index)
|
200 |
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
201 |
-
print('Segmentation: done')
|
202 |
|
203 |
def merge_result(self):
|
204 |
self.file_result = ["" for _ in range(len(self.file_paths))]
|
@@ -404,7 +402,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|
404 |
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
|
405 |
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
406 |
if modified_pdf_success:
|
407 |
-
yield from update_ui_lastest_msg(f'转化PDF编译已经成功,
|
408 |
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
|
409 |
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
|
410 |
if os.path.exists(pj(work_folder, '..', 'translation')):
|
@@ -416,8 +414,11 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|
416 |
from .latex_toolbox import merge_pdfs
|
417 |
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
|
418 |
merge_pdfs(origin_pdf, result_pdf, concat_pdf)
|
|
|
|
|
419 |
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
420 |
except Exception as e:
|
|
|
421 |
pass
|
422 |
return True # 成功啦
|
423 |
else:
|
|
|
175 |
self.sp_file_contents = []
|
176 |
self.sp_file_index = []
|
177 |
self.sp_file_tag = []
|
|
|
178 |
# count_token
|
179 |
from request_llms.bridge_all import model_info
|
180 |
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
|
|
191 |
self.sp_file_index.append(index)
|
192 |
self.sp_file_tag.append(self.file_paths[index])
|
193 |
else:
|
194 |
+
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
195 |
+
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
|
196 |
for j, segment in enumerate(segments):
|
197 |
self.sp_file_contents.append(segment)
|
198 |
self.sp_file_index.append(index)
|
199 |
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
|
|
200 |
|
201 |
def merge_result(self):
|
202 |
self.file_result = ["" for _ in range(len(self.file_paths))]
|
|
|
402 |
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
|
403 |
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
404 |
if modified_pdf_success:
|
405 |
+
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
|
406 |
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
|
407 |
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
|
408 |
if os.path.exists(pj(work_folder, '..', 'translation')):
|
|
|
414 |
from .latex_toolbox import merge_pdfs
|
415 |
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
|
416 |
merge_pdfs(origin_pdf, result_pdf, concat_pdf)
|
417 |
+
if os.path.exists(pj(work_folder, '..', 'translation')):
|
418 |
+
shutil.copyfile(concat_pdf, pj(work_folder, '..', 'translation', 'comparison.pdf'))
|
419 |
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
420 |
except Exception as e:
|
421 |
+
print(e)
|
422 |
pass
|
423 |
return True # 成功啦
|
424 |
else:
|
crazy_functions/latex_fns/latex_toolbox.py
CHANGED
@@ -493,11 +493,38 @@ def compile_latex_with_timeout(command, cwd, timeout=60):
|
|
493 |
return False
|
494 |
return True
|
495 |
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
Percent = 0.95
|
|
|
501 |
# Open the first PDF file
|
502 |
with open(pdf1_path, 'rb') as pdf1_file:
|
503 |
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
|
@@ -531,3 +558,5 @@ def merge_pdfs(pdf1_path, pdf2_path, output_path):
|
|
531 |
# Save the merged PDF file
|
532 |
with open(output_path, 'wb') as output_file:
|
533 |
output_writer.write(output_file)
|
|
|
|
|
|
493 |
return False
|
494 |
return True
|
495 |
|
496 |
+
def run_in_subprocess_wrapper_func(func, args, kwargs, return_dict, exception_dict):
|
497 |
+
import sys
|
498 |
+
try:
|
499 |
+
result = func(*args, **kwargs)
|
500 |
+
return_dict['result'] = result
|
501 |
+
except Exception as e:
|
502 |
+
exc_info = sys.exc_info()
|
503 |
+
exception_dict['exception'] = exc_info
|
504 |
+
|
505 |
+
def run_in_subprocess(func):
|
506 |
+
import multiprocessing
|
507 |
+
def wrapper(*args, **kwargs):
|
508 |
+
return_dict = multiprocessing.Manager().dict()
|
509 |
+
exception_dict = multiprocessing.Manager().dict()
|
510 |
+
process = multiprocessing.Process(target=run_in_subprocess_wrapper_func,
|
511 |
+
args=(func, args, kwargs, return_dict, exception_dict))
|
512 |
+
process.start()
|
513 |
+
process.join()
|
514 |
+
process.close()
|
515 |
+
if 'exception' in exception_dict:
|
516 |
+
# ooops, the subprocess ran into an exception
|
517 |
+
exc_info = exception_dict['exception']
|
518 |
+
raise exc_info[1].with_traceback(exc_info[2])
|
519 |
+
if 'result' in return_dict.keys():
|
520 |
+
# If the subprocess ran successfully, return the result
|
521 |
+
return return_dict['result']
|
522 |
+
return wrapper
|
523 |
+
|
524 |
+
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
|
525 |
+
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
526 |
Percent = 0.95
|
527 |
+
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
|
528 |
# Open the first PDF file
|
529 |
with open(pdf1_path, 'rb') as pdf1_file:
|
530 |
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
|
|
|
558 |
# Save the merged PDF file
|
559 |
with open(output_path, 'wb') as output_file:
|
560 |
output_writer.write(output_file)
|
561 |
+
|
562 |
+
merge_pdfs = run_in_subprocess(_merge_pdfs) # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
crazy_functions/multi_stage/multi_stage_utils.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from pydantic import BaseModel, Field
|
2 |
from typing import List
|
3 |
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
|
|
4 |
from request_llms.bridge_all import predict_no_ui_long_connection
|
5 |
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
6 |
import time
|
@@ -21,11 +22,7 @@ class GptAcademicState():
|
|
21 |
def reset(self):
|
22 |
pass
|
23 |
|
24 |
-
def
|
25 |
-
chatbot._cookies['plugin_state'] = pickle.dumps(self)
|
26 |
-
|
27 |
-
def unlock_plugin(self, chatbot):
|
28 |
-
self.reset()
|
29 |
chatbot._cookies['plugin_state'] = pickle.dumps(self)
|
30 |
|
31 |
def set_state(self, chatbot, key, value):
|
@@ -40,6 +37,57 @@ class GptAcademicState():
|
|
40 |
state.chatbot = chatbot
|
41 |
return state
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from pydantic import BaseModel, Field
|
2 |
from typing import List
|
3 |
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
4 |
+
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
|
5 |
from request_llms.bridge_all import predict_no_ui_long_connection
|
6 |
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
7 |
import time
|
|
|
22 |
def reset(self):
|
23 |
pass
|
24 |
|
25 |
+
def dump_state(self, chatbot):
|
|
|
|
|
|
|
|
|
26 |
chatbot._cookies['plugin_state'] = pickle.dumps(self)
|
27 |
|
28 |
def set_state(self, chatbot, key, value):
|
|
|
37 |
state.chatbot = chatbot
|
38 |
return state
|
39 |
|
40 |
+
|
41 |
+
class GptAcademicGameBaseState():
|
42 |
+
"""
|
43 |
+
1. first init: __init__ ->
|
44 |
+
"""
|
45 |
+
def init_game(self, chatbot, lock_plugin):
|
46 |
+
self.plugin_name = None
|
47 |
+
self.callback_fn = None
|
48 |
+
self.delete_game = False
|
49 |
+
self.step_cnt = 0
|
50 |
+
|
51 |
+
def lock_plugin(self, chatbot):
|
52 |
+
if self.callback_fn is None:
|
53 |
+
raise ValueError("callback_fn is None")
|
54 |
+
chatbot._cookies['lock_plugin'] = self.callback_fn
|
55 |
+
self.dump_state(chatbot)
|
56 |
+
|
57 |
+
def get_plugin_name(self):
|
58 |
+
if self.plugin_name is None:
|
59 |
+
raise ValueError("plugin_name is None")
|
60 |
+
return self.plugin_name
|
61 |
+
|
62 |
+
def dump_state(self, chatbot):
|
63 |
+
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = pickle.dumps(self)
|
64 |
+
|
65 |
+
def set_state(self, chatbot, key, value):
|
66 |
+
setattr(self, key, value)
|
67 |
+
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = pickle.dumps(self)
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def sync_state(chatbot, llm_kwargs, cls, plugin_name, callback_fn, lock_plugin=True):
|
71 |
+
state = chatbot._cookies.get(f'plugin_state/{plugin_name}', None)
|
72 |
+
if state is not None:
|
73 |
+
state = pickle.loads(state)
|
74 |
+
else:
|
75 |
+
state = cls()
|
76 |
+
state.init_game(chatbot, lock_plugin)
|
77 |
+
state.plugin_name = plugin_name
|
78 |
+
state.llm_kwargs = llm_kwargs
|
79 |
+
state.chatbot = chatbot
|
80 |
+
state.callback_fn = callback_fn
|
81 |
+
return state
|
82 |
+
|
83 |
+
def continue_game(self, prompt, chatbot, history):
|
84 |
+
# 游戏主体
|
85 |
+
yield from self.step(prompt, chatbot, history)
|
86 |
+
self.step_cnt += 1
|
87 |
+
# 保存状态,收尾
|
88 |
+
self.dump_state(chatbot)
|
89 |
+
# 如果游戏结束,清理
|
90 |
+
if self.delete_game:
|
91 |
+
chatbot._cookies['lock_plugin'] = None
|
92 |
+
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = None
|
93 |
+
yield from update_ui(chatbot=chatbot, history=history)
|
crazy_functions/pdf_fns/parse_pdf.py
CHANGED
@@ -74,7 +74,7 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
|
|
74 |
|
75 |
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
|
76 |
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
77 |
-
from crazy_functions.
|
78 |
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
79 |
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
80 |
|
@@ -116,7 +116,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
|
116 |
# find a smooth token limit to achieve even seperation
|
117 |
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
118 |
token_limit_smooth = raw_token_num // count + count
|
119 |
-
return
|
120 |
|
121 |
for section in article_dict.get('sections'):
|
122 |
if len(section['text']) == 0: continue
|
|
|
74 |
|
75 |
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
|
76 |
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
77 |
+
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
78 |
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
79 |
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
80 |
|
|
|
116 |
# find a smooth token limit to achieve even seperation
|
117 |
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
118 |
token_limit_smooth = raw_token_num // count + count
|
119 |
+
return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model'])
|
120 |
|
121 |
for section in article_dict.get('sections'):
|
122 |
if len(section['text']) == 0: continue
|
crazy_functions/图片生成.py
CHANGED
@@ -2,7 +2,7 @@ from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log
|
|
2 |
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicState
|
3 |
|
4 |
|
5 |
-
def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", quality=None):
|
6 |
import requests, json, time, os
|
7 |
from request_llms.bridge_all import model_info
|
8 |
|
@@ -25,7 +25,10 @@ def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", qual
|
|
25 |
'model': model,
|
26 |
'response_format': 'url'
|
27 |
}
|
28 |
-
if quality is not None:
|
|
|
|
|
|
|
29 |
response = requests.post(url, headers=headers, json=data, proxies=proxies)
|
30 |
print(response.content)
|
31 |
try:
|
@@ -54,19 +57,25 @@ def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="da
|
|
54 |
img_endpoint = chat_endpoint.replace('chat/completions','images/edits')
|
55 |
# # Generate the image
|
56 |
url = img_endpoint
|
|
|
57 |
headers = {
|
58 |
'Authorization': f"Bearer {api_key}",
|
59 |
-
'Content-Type': 'application/json'
|
60 |
-
}
|
61 |
-
data = {
|
62 |
-
'image': open(image_path, 'rb'),
|
63 |
-
'prompt': prompt,
|
64 |
-
'n': 1,
|
65 |
-
'size': resolution,
|
66 |
-
'model': model,
|
67 |
-
'response_format': 'url'
|
68 |
}
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
print(response.content)
|
71 |
try:
|
72 |
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
@@ -95,7 +104,11 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|
95 |
web_port 当前软件运行的端口号
|
96 |
"""
|
97 |
history = [] # 清空历史,以免输入溢出
|
98 |
-
|
|
|
|
|
|
|
|
|
99 |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
100 |
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
101 |
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
|
@@ -112,16 +125,25 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|
112 |
@CatchException
|
113 |
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
114 |
history = [] # 清空历史,以免输入溢出
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
117 |
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
125 |
chatbot.append([prompt,
|
126 |
f'图像中转网址: <br/>`{image_url}`<br/>'+
|
127 |
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
|
@@ -130,6 +152,7 @@ def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|
130 |
])
|
131 |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
|
132 |
|
|
|
133 |
class ImageEditState(GptAcademicState):
|
134 |
# 尚未完成
|
135 |
def get_image_file(self, x):
|
@@ -142,18 +165,27 @@ class ImageEditState(GptAcademicState):
|
|
142 |
file = None if not confirm else file_manifest[0]
|
143 |
return confirm, file
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
def get_resolution(self, x):
|
146 |
return (x in ['256x256', '512x512', '1024x1024']), x
|
147 |
-
|
148 |
def get_prompt(self, x):
|
149 |
confirm = (len(x)>=5) and (not self.get_resolution(x)[0]) and (not self.get_image_file(x)[0])
|
150 |
return confirm, x
|
151 |
-
|
152 |
def reset(self):
|
153 |
self.req = [
|
154 |
-
{'value':None, 'description': '请先上传图像(必须是.png格式), 然后再次点击本插件',
|
155 |
-
{'value':None, 'description': '请输入分辨率,可选:256x256, 512x512 或 1024x1024', 'verify_fn': self.get_resolution},
|
156 |
-
{'value':None, 'description': '
|
157 |
]
|
158 |
self.info = ""
|
159 |
|
@@ -163,7 +195,7 @@ class ImageEditState(GptAcademicState):
|
|
163 |
confirm, res = r['verify_fn'](prompt)
|
164 |
if confirm:
|
165 |
r['value'] = res
|
166 |
-
self.
|
167 |
break
|
168 |
return self
|
169 |
|
@@ -182,23 +214,63 @@ def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|
182 |
history = [] # 清空历史
|
183 |
state = ImageEditState.get_state(chatbot, ImageEditState)
|
184 |
state = state.feed(prompt, chatbot)
|
|
|
185 |
if not state.already_obtained_all_materials():
|
186 |
-
chatbot.append(["
|
187 |
yield from update_ui(chatbot=chatbot, history=history)
|
188 |
return
|
189 |
|
190 |
-
image_path = state.req[0]
|
191 |
-
resolution = state.req[1]
|
192 |
-
prompt = state.req[2]
|
193 |
chatbot.append(["图片修改, 执行中", f"图片:`{image_path}`<br/>分辨率:`{resolution}`<br/>修改需求:`{prompt}`"])
|
194 |
yield from update_ui(chatbot=chatbot, history=history)
|
195 |
-
|
196 |
image_url, image_path = edit_image(llm_kwargs, prompt, image_path, resolution)
|
197 |
-
chatbot.append([
|
198 |
f'图像中转网址: <br/>`{image_url}`<br/>'+
|
199 |
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
|
200 |
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
201 |
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
202 |
])
|
203 |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicState
|
3 |
|
4 |
|
5 |
+
def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", quality=None, style=None):
|
6 |
import requests, json, time, os
|
7 |
from request_llms.bridge_all import model_info
|
8 |
|
|
|
25 |
'model': model,
|
26 |
'response_format': 'url'
|
27 |
}
|
28 |
+
if quality is not None:
|
29 |
+
data['quality'] = quality
|
30 |
+
if style is not None:
|
31 |
+
data['style'] = style
|
32 |
response = requests.post(url, headers=headers, json=data, proxies=proxies)
|
33 |
print(response.content)
|
34 |
try:
|
|
|
57 |
img_endpoint = chat_endpoint.replace('chat/completions','images/edits')
|
58 |
# # Generate the image
|
59 |
url = img_endpoint
|
60 |
+
n = 1
|
61 |
headers = {
|
62 |
'Authorization': f"Bearer {api_key}",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
}
|
64 |
+
make_transparent(image_path, image_path+'.tsp.png')
|
65 |
+
make_square_image(image_path+'.tsp.png', image_path+'.tspsq.png')
|
66 |
+
resize_image(image_path+'.tspsq.png', image_path+'.ready.png', max_size=1024)
|
67 |
+
image_path = image_path+'.ready.png'
|
68 |
+
with open(image_path, 'rb') as f:
|
69 |
+
file_content = f.read()
|
70 |
+
files = {
|
71 |
+
'image': (os.path.basename(image_path), file_content),
|
72 |
+
# 'mask': ('mask.png', open('mask.png', 'rb'))
|
73 |
+
'prompt': (None, prompt),
|
74 |
+
"n": (None, str(n)),
|
75 |
+
'size': (None, resolution),
|
76 |
+
}
|
77 |
+
|
78 |
+
response = requests.post(url, headers=headers, files=files, proxies=proxies)
|
79 |
print(response.content)
|
80 |
try:
|
81 |
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
|
|
104 |
web_port 当前软件运行的端口号
|
105 |
"""
|
106 |
history = [] # 清空历史,以免输入溢出
|
107 |
+
if prompt.strip() == "":
|
108 |
+
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
|
109 |
+
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
|
110 |
+
return
|
111 |
+
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
|
112 |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
113 |
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
114 |
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
|
|
|
125 |
@CatchException
|
126 |
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
127 |
history = [] # 清空历史,以免输入溢出
|
128 |
+
if prompt.strip() == "":
|
129 |
+
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
|
130 |
+
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
|
131 |
+
return
|
132 |
+
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
|
133 |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
134 |
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
135 |
+
resolution_arg = plugin_kwargs.get("advanced_arg", '1024x1024-standard-vivid').lower()
|
136 |
+
parts = resolution_arg.split('-')
|
137 |
+
resolution = parts[0] # 解析分辨率
|
138 |
+
quality = 'standard' # 质量与风格默认值
|
139 |
+
style = 'vivid'
|
140 |
+
# 遍历检查是否有额外参数
|
141 |
+
for part in parts[1:]:
|
142 |
+
if part in ['hd', 'standard']:
|
143 |
+
quality = part
|
144 |
+
elif part in ['vivid', 'natural']:
|
145 |
+
style = part
|
146 |
+
image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality, style=style)
|
147 |
chatbot.append([prompt,
|
148 |
f'图像中转网址: <br/>`{image_url}`<br/>'+
|
149 |
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
|
|
|
152 |
])
|
153 |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
|
154 |
|
155 |
+
|
156 |
class ImageEditState(GptAcademicState):
|
157 |
# 尚未完成
|
158 |
def get_image_file(self, x):
|
|
|
165 |
file = None if not confirm else file_manifest[0]
|
166 |
return confirm, file
|
167 |
|
168 |
+
def lock_plugin(self, chatbot):
|
169 |
+
chatbot._cookies['lock_plugin'] = 'crazy_functions.图片生成->图片修改_DALLE2'
|
170 |
+
self.dump_state(chatbot)
|
171 |
+
|
172 |
+
def unlock_plugin(self, chatbot):
|
173 |
+
self.reset()
|
174 |
+
chatbot._cookies['lock_plugin'] = None
|
175 |
+
self.dump_state(chatbot)
|
176 |
+
|
177 |
def get_resolution(self, x):
|
178 |
return (x in ['256x256', '512x512', '1024x1024']), x
|
179 |
+
|
180 |
def get_prompt(self, x):
|
181 |
confirm = (len(x)>=5) and (not self.get_resolution(x)[0]) and (not self.get_image_file(x)[0])
|
182 |
return confirm, x
|
183 |
+
|
184 |
def reset(self):
|
185 |
self.req = [
|
186 |
+
{'value':None, 'description': '请先上传图像(必须是.png格式), 然后再次点击本插件', 'verify_fn': self.get_image_file},
|
187 |
+
{'value':None, 'description': '请输入分辨率,可选:256x256, 512x512 或 1024x1024, 然后再次点击本插件', 'verify_fn': self.get_resolution},
|
188 |
+
{'value':None, 'description': '请输入修改需求,建议您使用英文提示词, 然后再次点击本插件', 'verify_fn': self.get_prompt},
|
189 |
]
|
190 |
self.info = ""
|
191 |
|
|
|
195 |
confirm, res = r['verify_fn'](prompt)
|
196 |
if confirm:
|
197 |
r['value'] = res
|
198 |
+
self.dump_state(chatbot)
|
199 |
break
|
200 |
return self
|
201 |
|
|
|
214 |
history = [] # 清空历史
|
215 |
state = ImageEditState.get_state(chatbot, ImageEditState)
|
216 |
state = state.feed(prompt, chatbot)
|
217 |
+
state.lock_plugin(chatbot)
|
218 |
if not state.already_obtained_all_materials():
|
219 |
+
chatbot.append(["图片修改\n\n1. 上传图片(图片中需要修改的位置用橡皮擦擦除为纯白色,即RGB=255,255,255)\n2. 输入分辨率 \n3. 输入修改需求", state.next_req()])
|
220 |
yield from update_ui(chatbot=chatbot, history=history)
|
221 |
return
|
222 |
|
223 |
+
image_path = state.req[0]['value']
|
224 |
+
resolution = state.req[1]['value']
|
225 |
+
prompt = state.req[2]['value']
|
226 |
chatbot.append(["图片修改, 执行中", f"图片:`{image_path}`<br/>分辨率:`{resolution}`<br/>修改需求:`{prompt}`"])
|
227 |
yield from update_ui(chatbot=chatbot, history=history)
|
|
|
228 |
image_url, image_path = edit_image(llm_kwargs, prompt, image_path, resolution)
|
229 |
+
chatbot.append([prompt,
|
230 |
f'图像中转网址: <br/>`{image_url}`<br/>'+
|
231 |
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
|
232 |
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
233 |
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
234 |
])
|
235 |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
|
236 |
+
state.unlock_plugin(chatbot)
|
237 |
+
|
238 |
+
def make_transparent(input_image_path, output_image_path):
|
239 |
+
from PIL import Image
|
240 |
+
image = Image.open(input_image_path)
|
241 |
+
image = image.convert("RGBA")
|
242 |
+
data = image.getdata()
|
243 |
+
new_data = []
|
244 |
+
for item in data:
|
245 |
+
if item[0] == 255 and item[1] == 255 and item[2] == 255:
|
246 |
+
new_data.append((255, 255, 255, 0))
|
247 |
+
else:
|
248 |
+
new_data.append(item)
|
249 |
+
image.putdata(new_data)
|
250 |
+
image.save(output_image_path, "PNG")
|
251 |
+
|
252 |
+
def resize_image(input_path, output_path, max_size=1024):
|
253 |
+
from PIL import Image
|
254 |
+
with Image.open(input_path) as img:
|
255 |
+
width, height = img.size
|
256 |
+
if width > max_size or height > max_size:
|
257 |
+
if width >= height:
|
258 |
+
new_width = max_size
|
259 |
+
new_height = int((max_size / width) * height)
|
260 |
+
else:
|
261 |
+
new_height = max_size
|
262 |
+
new_width = int((max_size / height) * width)
|
263 |
+
|
264 |
+
resized_img = img.resize(size=(new_width, new_height))
|
265 |
+
resized_img.save(output_path)
|
266 |
+
else:
|
267 |
+
img.save(output_path)
|
268 |
|
269 |
+
def make_square_image(input_path, output_path):
|
270 |
+
from PIL import Image
|
271 |
+
with Image.open(input_path) as img:
|
272 |
+
width, height = img.size
|
273 |
+
size = max(width, height)
|
274 |
+
new_img = Image.new("RGBA", (size, size), color="black")
|
275 |
+
new_img.paste(img, ((size - width) // 2, (size - height) // 2))
|
276 |
+
new_img.save(output_path)
|
crazy_functions/总结word文档.py
CHANGED
@@ -29,17 +29,12 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
|
|
29 |
except:
|
30 |
raise RuntimeError('请先将.doc文档转换为.docx文档。')
|
31 |
|
32 |
-
print(file_content)
|
33 |
# private_upload里面的文件名在解压zip后容易出现乱码(rar和7z格式正常),故可以只分析文章内容,不输入文件名
|
34 |
-
from .
|
35 |
from request_llms.bridge_all import model_info
|
36 |
max_token = model_info[llm_kwargs['llm_model']]['max_token']
|
37 |
TOKEN_LIMIT_PER_FRAGMENT = max_token * 3 // 4
|
38 |
-
paper_fragments =
|
39 |
-
txt=file_content,
|
40 |
-
get_token_fn=model_info[llm_kwargs['llm_model']]['token_cnt'],
|
41 |
-
limit=TOKEN_LIMIT_PER_FRAGMENT
|
42 |
-
)
|
43 |
this_paper_history = []
|
44 |
for i, paper_frag in enumerate(paper_fragments):
|
45 |
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'
|
|
|
29 |
except:
|
30 |
raise RuntimeError('请先将.doc文档转换为.docx文档。')
|
31 |
|
|
|
32 |
# private_upload里面的文件名在解压zip后容易出现乱码(rar和7z格式正常),故可以只分析文章内容,不输入文件名
|
33 |
+
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
34 |
from request_llms.bridge_all import model_info
|
35 |
max_token = model_info[llm_kwargs['llm_model']]['max_token']
|
36 |
TOKEN_LIMIT_PER_FRAGMENT = max_token * 3 // 4
|
37 |
+
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
|
|
|
|
|
|
|
|
38 |
this_paper_history = []
|
39 |
for i, paper_frag in enumerate(paper_fragments):
|
40 |
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'
|
crazy_functions/批量Markdown翻译.py
CHANGED
@@ -28,8 +28,8 @@ class PaperFileGroup():
|
|
28 |
self.sp_file_index.append(index)
|
29 |
self.sp_file_tag.append(self.file_paths[index])
|
30 |
else:
|
31 |
-
from .
|
32 |
-
segments =
|
33 |
for j, segment in enumerate(segments):
|
34 |
self.sp_file_contents.append(segment)
|
35 |
self.sp_file_index.append(index)
|
|
|
28 |
self.sp_file_index.append(index)
|
29 |
self.sp_file_tag.append(self.file_paths[index])
|
30 |
else:
|
31 |
+
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
32 |
+
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
|
33 |
for j, segment in enumerate(segments):
|
34 |
self.sp_file_contents.append(segment)
|
35 |
self.sp_file_index.append(index)
|
crazy_functions/批量总结PDF文档.py
CHANGED
@@ -20,14 +20,9 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|
20 |
|
21 |
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
22 |
|
23 |
-
from .
|
24 |
-
|
25 |
-
|
26 |
-
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
27 |
-
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
28 |
-
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
29 |
-
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
30 |
-
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
31 |
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
32 |
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
33 |
|
|
|
20 |
|
21 |
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
22 |
|
23 |
+
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
24 |
+
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
25 |
+
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
|
|
|
|
|
|
|
|
|
|
26 |
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
27 |
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
28 |
|
crazy_functions/批量翻译PDF文档_多线程.py
CHANGED
@@ -91,14 +91,9 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|
91 |
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
92 |
|
93 |
# 递归地切割PDF文件
|
94 |
-
from .
|
95 |
-
|
96 |
-
|
97 |
-
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
98 |
-
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
99 |
-
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
100 |
-
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
101 |
-
txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
102 |
|
103 |
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
104 |
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
|
|
91 |
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
92 |
|
93 |
# 递归地切割PDF文件
|
94 |
+
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
95 |
+
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
96 |
+
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=page_one, limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
99 |
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
crazy_functions/理解PDF文档内容.py
CHANGED
@@ -18,14 +18,9 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|
18 |
|
19 |
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
20 |
|
21 |
-
from .
|
22 |
-
|
23 |
-
|
24 |
-
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
25 |
-
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
26 |
-
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
27 |
-
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
28 |
-
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
29 |
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
30 |
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
31 |
|
@@ -45,7 +40,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|
45 |
for i in range(n_fragment):
|
46 |
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
47 |
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
48 |
-
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]}"
|
49 |
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
50 |
llm_kwargs, chatbot,
|
51 |
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
|
|
18 |
|
19 |
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
20 |
|
21 |
+
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
22 |
+
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
23 |
+
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
|
|
|
|
|
|
|
|
|
|
24 |
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
25 |
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
26 |
|
|
|
40 |
for i in range(n_fragment):
|
41 |
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
42 |
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
43 |
+
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]} ...."
|
44 |
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
45 |
llm_kwargs, chatbot,
|
46 |
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
crazy_functions/解析JupyterNotebook.py
CHANGED
@@ -12,13 +12,6 @@ class PaperFileGroup():
|
|
12 |
self.sp_file_index = []
|
13 |
self.sp_file_tag = []
|
14 |
|
15 |
-
# count_token
|
16 |
-
from request_llms.bridge_all import model_info
|
17 |
-
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
18 |
-
def get_token_num(txt): return len(
|
19 |
-
enc.encode(txt, disallowed_special=()))
|
20 |
-
self.get_token_num = get_token_num
|
21 |
-
|
22 |
def run_file_split(self, max_token_limit=1900):
|
23 |
"""
|
24 |
将长文本分离开来
|
@@ -29,9 +22,8 @@ class PaperFileGroup():
|
|
29 |
self.sp_file_index.append(index)
|
30 |
self.sp_file_tag.append(self.file_paths[index])
|
31 |
else:
|
32 |
-
from .
|
33 |
-
segments =
|
34 |
-
file_content, self.get_token_num, max_token_limit)
|
35 |
for j, segment in enumerate(segments):
|
36 |
self.sp_file_contents.append(segment)
|
37 |
self.sp_file_index.append(index)
|
|
|
12 |
self.sp_file_index = []
|
13 |
self.sp_file_tag = []
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def run_file_split(self, max_token_limit=1900):
|
16 |
"""
|
17 |
将长文本分离开来
|
|
|
22 |
self.sp_file_index.append(index)
|
23 |
self.sp_file_tag.append(self.file_paths[index])
|
24 |
else:
|
25 |
+
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
26 |
+
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
|
|
|
27 |
for j, segment in enumerate(segments):
|
28 |
self.sp_file_contents.append(segment)
|
29 |
self.sp_file_index.append(index)
|
docs/translate_english.json
CHANGED
@@ -923,7 +923,7 @@
|
|
923 |
"的第": "The",
|
924 |
"个片段": "fragment",
|
925 |
"总结文章": "Summarize the article",
|
926 |
-
"根据以上的对话": "According to the above
|
927 |
"的主要内容": "The main content of",
|
928 |
"所有文件都总结完成了吗": "Are all files summarized?",
|
929 |
"如果是.doc文件": "If it is a .doc file",
|
@@ -1501,7 +1501,7 @@
|
|
1501 |
"发送请求到OpenAI后": "After sending the request to OpenAI",
|
1502 |
"上下布局": "Vertical Layout",
|
1503 |
"左右布局": "Horizontal Layout",
|
1504 |
-
"对话窗的高度": "Height of the
|
1505 |
"重试的次数限制": "Retry Limit",
|
1506 |
"gpt4现在只对申请成功的人开放": "GPT-4 is now only open to those who have successfully applied",
|
1507 |
"提高限制请查询": "Please check for higher limits",
|
@@ -2183,9 +2183,8 @@
|
|
2183 |
"找不到合适插件执行该任务": "Cannot find a suitable plugin to perform this task",
|
2184 |
"接驳VoidTerminal": "Connect to VoidTerminal",
|
2185 |
"**很好": "**Very good",
|
2186 |
-
"对话|编程": "Conversation|Programming",
|
2187 |
-
"对话|编程|学术": "Conversation|Programming|Academic",
|
2188 |
-
"4. 建议使用 GPT3.5 或更强的模型": "4. It is recommended to use GPT3.5 or a stronger model",
|
2189 |
"「请调用插件翻译PDF论文": "Please call the plugin to translate the PDF paper",
|
2190 |
"3. 如果您使用「调用插件xxx」、「修改配置xxx」、「请问」等关键词": "3. If you use keywords such as 'call plugin xxx', 'modify configuration xxx', 'please', etc.",
|
2191 |
"以下是一篇学术论文的基本信息": "The following is the basic information of an academic paper",
|
@@ -2630,7 +2629,7 @@
|
|
2630 |
"已经被记忆": "Already memorized",
|
2631 |
"默认用英文的": "Default to English",
|
2632 |
"错误追踪": "Error tracking",
|
2633 |
-
"
|
2634 |
"请检查": "Please check",
|
2635 |
"检测到被滞留的缓存文档": "Detected cached documents being left behind",
|
2636 |
"还有哪些场合允许使用代理": "What other occasions allow the use of proxies",
|
@@ -2864,7 +2863,7 @@
|
|
2864 |
"加载API_KEY": "Loading API_KEY",
|
2865 |
"协助您编写代码": "Assist you in writing code",
|
2866 |
"我可以为您提供以下服务": "I can provide you with the following services",
|
2867 |
-
"
|
2868 |
"建议您使用英文提示词": "It is recommended to use English prompts",
|
2869 |
"不能支撑AutoGen运行": "Cannot support AutoGen operation",
|
2870 |
"帮助您解决编程问题": "Help you solve programming problems",
|
@@ -2903,5 +2902,107 @@
|
|
2903 |
"高优先级": "High priority",
|
2904 |
"请配置ZHIPUAI_API_KEY": "Please configure ZHIPUAI_API_KEY",
|
2905 |
"单个azure模型": "Single Azure model",
|
2906 |
-
"预留参数 context 未实现": "Reserved parameter 'context' not implemented"
|
2907 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
923 |
"的第": "The",
|
924 |
"个片段": "fragment",
|
925 |
"总结文章": "Summarize the article",
|
926 |
+
"根据以上的对话": "According to the conversation above",
|
927 |
"的主要内容": "The main content of",
|
928 |
"所有文件都总结完成了吗": "Are all files summarized?",
|
929 |
"如果是.doc文件": "If it is a .doc file",
|
|
|
1501 |
"发送请求到OpenAI后": "After sending the request to OpenAI",
|
1502 |
"上下布局": "Vertical Layout",
|
1503 |
"左右布局": "Horizontal Layout",
|
1504 |
+
"对话窗的高度": "Height of the Conversation Window",
|
1505 |
"重试的次数限制": "Retry Limit",
|
1506 |
"gpt4现在只对申请成功的人开放": "GPT-4 is now only open to those who have successfully applied",
|
1507 |
"提高限制请查询": "Please check for higher limits",
|
|
|
2183 |
"找不到合适插件执行该任务": "Cannot find a suitable plugin to perform this task",
|
2184 |
"接驳VoidTerminal": "Connect to VoidTerminal",
|
2185 |
"**很好": "**Very good",
|
2186 |
+
"对话|编程": "Conversation&ImageGenerating|Programming",
|
2187 |
+
"对话|编程|学术": "Conversation&ImageGenerating|Programming|Academic", "4. 建议使用 GPT3.5 或更强的模型": "4. It is recommended to use GPT3.5 or a stronger model",
|
|
|
2188 |
"「请调用插件翻译PDF论文": "Please call the plugin to translate the PDF paper",
|
2189 |
"3. 如果您使用「调用插件xxx」、「修改配置xxx」、「请问」等关键词": "3. If you use keywords such as 'call plugin xxx', 'modify configuration xxx', 'please', etc.",
|
2190 |
"以下是一篇学术论文的基本信息": "The following is the basic information of an academic paper",
|
|
|
2629 |
"已经被记忆": "Already memorized",
|
2630 |
"默认用英文的": "Default to English",
|
2631 |
"错误追踪": "Error tracking",
|
2632 |
+
"对话&编程|编程|学术|智能体": "Conversation&ImageGenerating|Programming|Academic|Intelligent agent",
|
2633 |
"请检查": "Please check",
|
2634 |
"检测到被滞留的缓存文档": "Detected cached documents being left behind",
|
2635 |
"还有哪些场合允许使用代理": "What other occasions allow the use of proxies",
|
|
|
2863 |
"加载API_KEY": "Loading API_KEY",
|
2864 |
"协助您编写代码": "Assist you in writing code",
|
2865 |
"我可以为您提供以下服务": "I can provide you with the following services",
|
2866 |
+
"排队中请稍候 ...": "Please wait in line ...",
|
2867 |
"建议您使用英文提示词": "It is recommended to use English prompts",
|
2868 |
"不能支撑AutoGen运行": "Cannot support AutoGen operation",
|
2869 |
"帮助您解决编程问题": "Help you solve programming problems",
|
|
|
2902 |
"高优先级": "High priority",
|
2903 |
"请配置ZHIPUAI_API_KEY": "Please configure ZHIPUAI_API_KEY",
|
2904 |
"单个azure模型": "Single Azure model",
|
2905 |
+
"预留参数 context 未实现": "Reserved parameter 'context' not implemented",
|
2906 |
+
"在输入区输入临时API_KEY后提交": "Submit after entering temporary API_KEY in the input area",
|
2907 |
+
"鸟": "Bird",
|
2908 |
+
"图片中需要修改的位置用橡皮擦擦除为纯白色": "Erase the areas in the image that need to be modified with an eraser to pure white",
|
2909 |
+
"└── PDF文档精准解析": "└── Accurate parsing of PDF documents",
|
2910 |
+
"└── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置": "└── ALLOW_RESET_CONFIG Whether to allow modifying the configuration of this page through natural language description",
|
2911 |
+
"等待指令": "Waiting for instructions",
|
2912 |
+
"不存在": "Does not exist",
|
2913 |
+
"选择游戏": "Select game",
|
2914 |
+
"本地大模型示意图": "Local large model diagram",
|
2915 |
+
"无视此消息即可": "You can ignore this message",
|
2916 |
+
"即RGB=255": "That is, RGB=255",
|
2917 |
+
"如需追问": "If you have further questions",
|
2918 |
+
"也可以是具体的模型路径": "It can also be a specific model path",
|
2919 |
+
"才会起作用": "Will take effect",
|
2920 |
+
"下载失败": "Download failed",
|
2921 |
+
"网页刷新后失效": "Invalid after webpage refresh",
|
2922 |
+
"crazy_functions.互动小游戏-": "crazy_functions.Interactive mini game-",
|
2923 |
+
"右对齐": "Right alignment",
|
2924 |
+
"您可以调用下拉菜单中的“LoadConversationHistoryArchive”还原当下的对话": "You can use the 'LoadConversationHistoryArchive' in the drop-down menu to restore the current conversation",
|
2925 |
+
"左对齐": "Left alignment",
|
2926 |
+
"使用默认的 FP16": "Use default FP16",
|
2927 |
+
"一小时": "One hour",
|
2928 |
+
"从而方便内存的释放": "Thus facilitating memory release",
|
2929 |
+
"如何临时更换API_KEY": "How to temporarily change API_KEY",
|
2930 |
+
"请输入 1024x1024-HD": "Please enter 1024x1024-HD",
|
2931 |
+
"使用 INT8 量化": "Use INT8 quantization",
|
2932 |
+
"3. 输入修改需求": "3. Enter modification requirements",
|
2933 |
+
"刷新界面 由于请求gpt需要一段时间": "Refreshing the interface takes some time due to the request for gpt",
|
2934 |
+
"随机小游戏": "Random mini game",
|
2935 |
+
"那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型": "So please specify the specific model in QWEN_MODEL_SELECTION below",
|
2936 |
+
"表值": "Table value",
|
2937 |
+
"我画你猜": "I draw, you guess",
|
2938 |
+
"狗": "Dog",
|
2939 |
+
"2. 输入分辨率": "2. Enter resolution",
|
2940 |
+
"鱼": "Fish",
|
2941 |
+
"尚未完成": "Not yet completed",
|
2942 |
+
"表头": "Table header",
|
2943 |
+
"填localhost或者127.0.0.1": "Fill in localhost or 127.0.0.1",
|
2944 |
+
"请上传jpg格式的图片": "Please upload images in jpg format",
|
2945 |
+
"API_URL_REDIRECT填写格式是错误的": "The format of API_URL_REDIRECT is incorrect",
|
2946 |
+
"├── RWKV的支持见Wiki": "Support for RWKV is available in the Wiki",
|
2947 |
+
"如果中文Prompt效果不理想": "If the Chinese prompt is not effective",
|
2948 |
+
"/SEAFILE_LOCAL/50503047/我的资料库/学位/paperlatex/aaai/Fu_8368_with_appendix": "/SEAFILE_LOCAL/50503047/My Library/Degree/paperlatex/aaai/Fu_8368_with_appendix",
|
2949 |
+
"只有当AVAIL_LLM_MODELS包含了对应本地模型时": "Only when AVAIL_LLM_MODELS contains the corresponding local model",
|
2950 |
+
"选择本地模型变体": "Choose the local model variant",
|
2951 |
+
"如果您确信自己没填错": "If you are sure you haven't made a mistake",
|
2952 |
+
"PyPDF2这个库有严重的内存泄露问题": "PyPDF2 library has serious memory leak issues",
|
2953 |
+
"整理文件集合 输出消息": "Organize file collection and output message",
|
2954 |
+
"没有检测到任何近期上传的图像文件": "No recently uploaded image files detected",
|
2955 |
+
"游戏结束": "Game over",
|
2956 |
+
"调用结束": "Call ended",
|
2957 |
+
"猫": "Cat",
|
2958 |
+
"请及时切换模型": "Please switch models in time",
|
2959 |
+
"次中": "In the meantime",
|
2960 |
+
"如需生成高清图像": "If you need to generate high-definition images",
|
2961 |
+
"CPU 模式": "CPU mode",
|
2962 |
+
"项目目录": "Project directory",
|
2963 |
+
"动物": "Animal",
|
2964 |
+
"居中对齐": "Center alignment",
|
2965 |
+
"请注意拓展名需要小写": "Please note that the extension name needs to be lowercase",
|
2966 |
+
"重试第": "Retry",
|
2967 |
+
"实验性功能": "Experimental feature",
|
2968 |
+
"猜错了": "Wrong guess",
|
2969 |
+
"打开你的代理软件查看代理协议": "Open your proxy software to view the proxy agreement",
|
2970 |
+
"您不需要再重复强调该文件的路径了": "You don't need to emphasize the file path again",
|
2971 |
+
"请阅读": "Please read",
|
2972 |
+
"请直接输入您的问题": "Please enter your question directly",
|
2973 |
+
"API_URL_REDIRECT填错了": "API_URL_REDIRECT is filled incorrectly",
|
2974 |
+
"谜底是": "The answer is",
|
2975 |
+
"第一个模型": "The first model",
|
2976 |
+
"你猜对了!": "You guessed it right!",
|
2977 |
+
"已经接收到您上传的文件": "The file you uploaded has been received",
|
2978 |
+
"您正在调用“图像生成”插件": "You are calling the 'Image Generation' plugin",
|
2979 |
+
"刷新界面 界面更新": "Refresh the interface, interface update",
|
2980 |
+
"如果之前已经初始化了游戏实例": "If the game instance has been initialized before",
|
2981 |
+
"文件": "File",
|
2982 |
+
"老鼠": "Mouse",
|
2983 |
+
"列2": "Column 2",
|
2984 |
+
"等待图片": "Waiting for image",
|
2985 |
+
"使用 INT4 量化": "Use INT4 quantization",
|
2986 |
+
"from crazy_functions.互动小游戏 import 随机小游戏": "TranslatedText",
|
2987 |
+
"游戏主体": "TranslatedText",
|
2988 |
+
"该模型不具备上下文对话能力": "TranslatedText",
|
2989 |
+
"列3": "TranslatedText",
|
2990 |
+
"清理": "TranslatedText",
|
2991 |
+
"检查量化配置": "TranslatedText",
|
2992 |
+
"如果游戏结束": "TranslatedText",
|
2993 |
+
"蛇": "TranslatedText",
|
2994 |
+
"则继续该实例;否则重新初始化": "TranslatedText",
|
2995 |
+
"e.g. cat and 猫 are the same thing": "TranslatedText",
|
2996 |
+
"第三个模型": "TranslatedText",
|
2997 |
+
"如果你选择Qwen系列的模型": "TranslatedText",
|
2998 |
+
"列4": "TranslatedText",
|
2999 |
+
"输入“exit”获取答案": "TranslatedText",
|
3000 |
+
"把它放到子进程中运行": "TranslatedText",
|
3001 |
+
"列1": "TranslatedText",
|
3002 |
+
"使用该模型需要额外依赖": "TranslatedText",
|
3003 |
+
"再试试": "TranslatedText",
|
3004 |
+
"1. 上传图片": "TranslatedText",
|
3005 |
+
"保存状态": "TranslatedText",
|
3006 |
+
"GPT-Academic对话存档": "TranslatedText",
|
3007 |
+
"Arxiv论文精细翻译": "TranslatedText"
|
3008 |
+
}
|
docs/translate_traditionalchinese.json
CHANGED
@@ -1043,9 +1043,9 @@
|
|
1043 |
"jittorllms响应异常": "jittorllms response exception",
|
1044 |
"在项目根目录运行这两个指令": "Run these two commands in the project root directory",
|
1045 |
"获取tokenizer": "Get tokenizer",
|
1046 |
-
"chatbot 为WebUI中显示的对话列表": "chatbot is the list of
|
1047 |
"test_解析一个Cpp项目": "test_parse a Cpp project",
|
1048 |
-
"将对话记录history以Markdown格式写入文件中": "Write the
|
1049 |
"装饰器函数": "Decorator function",
|
1050 |
"玫瑰色": "Rose color",
|
1051 |
"将单空行": "刪除單行空白",
|
@@ -2270,4 +2270,4 @@
|
|
2270 |
"标注节点的行数范围": "標註節點的行數範圍",
|
2271 |
"默认 True": "默認 True",
|
2272 |
"将两个PDF拼接": "將兩個PDF拼接"
|
2273 |
-
}
|
|
|
1043 |
"jittorllms响应异常": "jittorllms response exception",
|
1044 |
"在项目根目录运行这两个指令": "Run these two commands in the project root directory",
|
1045 |
"获取tokenizer": "Get tokenizer",
|
1046 |
+
"chatbot 为WebUI中显示的对话列表": "chatbot is the list of conversations displayed in WebUI",
|
1047 |
"test_解析一个Cpp项目": "test_parse a Cpp project",
|
1048 |
+
"将对话记录history以Markdown格式写入文件中": "Write the conversations record history to a file in Markdown format",
|
1049 |
"装饰器函数": "Decorator function",
|
1050 |
"玫瑰色": "Rose color",
|
1051 |
"将单空行": "刪除單行空白",
|
|
|
2270 |
"标注节点的行数范围": "標註節點的行數範圍",
|
2271 |
"默认 True": "默認 True",
|
2272 |
"将两个PDF拼接": "將兩個PDF拼接"
|
2273 |
+
}
|
multi_language.py
CHANGED
@@ -182,12 +182,12 @@ cached_translation = read_map_from_json(language=LANG)
|
|
182 |
def trans(word_to_translate, language, special=False):
|
183 |
if len(word_to_translate) == 0: return {}
|
184 |
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
185 |
-
from toolbox import get_conf, ChatBotWithCookies
|
186 |
-
|
187 |
-
|
188 |
llm_kwargs = {
|
189 |
-
'api_key':
|
190 |
-
'llm_model':
|
191 |
'top_p':1.0,
|
192 |
'max_length': None,
|
193 |
'temperature':0.4,
|
@@ -245,15 +245,15 @@ def trans(word_to_translate, language, special=False):
|
|
245 |
def trans_json(word_to_translate, language, special=False):
|
246 |
if len(word_to_translate) == 0: return {}
|
247 |
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
248 |
-
from toolbox import get_conf, ChatBotWithCookies
|
249 |
-
|
250 |
-
|
251 |
llm_kwargs = {
|
252 |
-
'api_key':
|
253 |
-
'llm_model':
|
254 |
'top_p':1.0,
|
255 |
'max_length': None,
|
256 |
-
'temperature':0.
|
257 |
}
|
258 |
import random
|
259 |
N_EACH_REQ = random.randint(16, 32)
|
|
|
182 |
def trans(word_to_translate, language, special=False):
|
183 |
if len(word_to_translate) == 0: return {}
|
184 |
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
185 |
+
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
|
186 |
+
|
187 |
+
cookies = load_chat_cookies()
|
188 |
llm_kwargs = {
|
189 |
+
'api_key': cookies['api_key'],
|
190 |
+
'llm_model': cookies['llm_model'],
|
191 |
'top_p':1.0,
|
192 |
'max_length': None,
|
193 |
'temperature':0.4,
|
|
|
245 |
def trans_json(word_to_translate, language, special=False):
|
246 |
if len(word_to_translate) == 0: return {}
|
247 |
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
248 |
+
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
|
249 |
+
|
250 |
+
cookies = load_chat_cookies()
|
251 |
llm_kwargs = {
|
252 |
+
'api_key': cookies['api_key'],
|
253 |
+
'llm_model': cookies['llm_model'],
|
254 |
'top_p':1.0,
|
255 |
'max_length': None,
|
256 |
+
'temperature':0.4,
|
257 |
}
|
258 |
import random
|
259 |
N_EACH_REQ = random.randint(16, 32)
|
request_llms/bridge_all.py
CHANGED
@@ -431,16 +431,48 @@ if "chatglm_onnx" in AVAIL_LLM_MODELS:
|
|
431 |
})
|
432 |
except:
|
433 |
print(trimmed_format_exc())
|
434 |
-
if "qwen" in AVAIL_LLM_MODELS:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
try:
|
436 |
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
437 |
from .bridge_qwen import predict as qwen_ui
|
438 |
model_info.update({
|
439 |
-
"qwen": {
|
440 |
"fn_with_ui": qwen_ui,
|
441 |
"fn_without_ui": qwen_noui,
|
442 |
"endpoint": None,
|
443 |
-
"max_token":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
"tokenizer": tokenizer_gpt35,
|
445 |
"token_cnt": get_token_num_gpt35,
|
446 |
}
|
@@ -552,7 +584,7 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
|
552 |
"fn_with_ui": deepseekcoder_ui,
|
553 |
"fn_without_ui": deepseekcoder_noui,
|
554 |
"endpoint": None,
|
555 |
-
"max_token":
|
556 |
"tokenizer": tokenizer_gpt35,
|
557 |
"token_cnt": get_token_num_gpt35,
|
558 |
}
|
|
|
431 |
})
|
432 |
except:
|
433 |
print(trimmed_format_exc())
|
434 |
+
if "qwen-local" in AVAIL_LLM_MODELS:
|
435 |
+
try:
|
436 |
+
from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui
|
437 |
+
from .bridge_qwen_local import predict as qwen_local_ui
|
438 |
+
model_info.update({
|
439 |
+
"qwen-local": {
|
440 |
+
"fn_with_ui": qwen_local_ui,
|
441 |
+
"fn_without_ui": qwen_local_noui,
|
442 |
+
"endpoint": None,
|
443 |
+
"max_token": 4096,
|
444 |
+
"tokenizer": tokenizer_gpt35,
|
445 |
+
"token_cnt": get_token_num_gpt35,
|
446 |
+
}
|
447 |
+
})
|
448 |
+
except:
|
449 |
+
print(trimmed_format_exc())
|
450 |
+
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
451 |
try:
|
452 |
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
453 |
from .bridge_qwen import predict as qwen_ui
|
454 |
model_info.update({
|
455 |
+
"qwen-turbo": {
|
456 |
"fn_with_ui": qwen_ui,
|
457 |
"fn_without_ui": qwen_noui,
|
458 |
"endpoint": None,
|
459 |
+
"max_token": 6144,
|
460 |
+
"tokenizer": tokenizer_gpt35,
|
461 |
+
"token_cnt": get_token_num_gpt35,
|
462 |
+
},
|
463 |
+
"qwen-plus": {
|
464 |
+
"fn_with_ui": qwen_ui,
|
465 |
+
"fn_without_ui": qwen_noui,
|
466 |
+
"endpoint": None,
|
467 |
+
"max_token": 30720,
|
468 |
+
"tokenizer": tokenizer_gpt35,
|
469 |
+
"token_cnt": get_token_num_gpt35,
|
470 |
+
},
|
471 |
+
"qwen-max": {
|
472 |
+
"fn_with_ui": qwen_ui,
|
473 |
+
"fn_without_ui": qwen_noui,
|
474 |
+
"endpoint": None,
|
475 |
+
"max_token": 28672,
|
476 |
"tokenizer": tokenizer_gpt35,
|
477 |
"token_cnt": get_token_num_gpt35,
|
478 |
}
|
|
|
584 |
"fn_with_ui": deepseekcoder_ui,
|
585 |
"fn_without_ui": deepseekcoder_noui,
|
586 |
"endpoint": None,
|
587 |
+
"max_token": 2048,
|
588 |
"tokenizer": tokenizer_gpt35,
|
589 |
"token_cnt": get_token_num_gpt35,
|
590 |
}
|
request_llms/bridge_chatgpt.py
CHANGED
@@ -51,7 +51,8 @@ def decode_chunk(chunk):
|
|
51 |
chunkjson = json.loads(chunk_decoded[6:])
|
52 |
has_choices = 'choices' in chunkjson
|
53 |
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
54 |
-
if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"]
|
|
|
55 |
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
56 |
except:
|
57 |
pass
|
@@ -101,20 +102,25 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|
101 |
result = ''
|
102 |
json_data = None
|
103 |
while True:
|
104 |
-
try: chunk = next(stream_response)
|
105 |
except StopIteration:
|
106 |
break
|
107 |
except requests.exceptions.ConnectionError:
|
108 |
-
chunk = next(stream_response)
|
109 |
-
|
110 |
-
if
|
111 |
-
|
|
|
112 |
if "reduce the length" in error_msg:
|
113 |
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
114 |
else:
|
115 |
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
116 |
-
if ('data: [DONE]' in
|
117 |
-
|
|
|
|
|
|
|
|
|
118 |
delta = json_data["delta"]
|
119 |
if len(delta) == 0: break
|
120 |
if "role" in delta: continue
|
|
|
51 |
chunkjson = json.loads(chunk_decoded[6:])
|
52 |
has_choices = 'choices' in chunkjson
|
53 |
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
54 |
+
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
55 |
+
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
56 |
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
57 |
except:
|
58 |
pass
|
|
|
102 |
result = ''
|
103 |
json_data = None
|
104 |
while True:
|
105 |
+
try: chunk = next(stream_response)
|
106 |
except StopIteration:
|
107 |
break
|
108 |
except requests.exceptions.ConnectionError:
|
109 |
+
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
110 |
+
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
111 |
+
if len(chunk_decoded)==0: continue
|
112 |
+
if not chunk_decoded.startswith('data:'):
|
113 |
+
error_msg = get_full_error(chunk, stream_response).decode()
|
114 |
if "reduce the length" in error_msg:
|
115 |
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
116 |
else:
|
117 |
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
118 |
+
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
119 |
+
# 提前读取一些信息 (用于判断异常)
|
120 |
+
if has_choices and not choice_valid:
|
121 |
+
# 一些垃圾第三方接口的出现这样的错误
|
122 |
+
continue
|
123 |
+
json_data = chunkjson['choices'][0]
|
124 |
delta = json_data["delta"]
|
125 |
if len(delta) == 0: break
|
126 |
if "role" in delta: continue
|
request_llms/bridge_chatgpt_vision.py
CHANGED
@@ -15,29 +15,16 @@ import requests
|
|
15 |
import base64
|
16 |
import os
|
17 |
import glob
|
|
|
|
|
|
|
18 |
|
19 |
-
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, update_ui_lastest_msg, get_max_token
|
20 |
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
21 |
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
22 |
|
23 |
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
24 |
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
25 |
|
26 |
-
def have_any_recent_upload_image_files(chatbot):
|
27 |
-
_5min = 5 * 60
|
28 |
-
if chatbot is None: return False, None # chatbot is None
|
29 |
-
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
30 |
-
if not most_recent_uploaded: return False, None # most_recent_uploaded is None
|
31 |
-
if time.time() - most_recent_uploaded["time"] < _5min:
|
32 |
-
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
33 |
-
path = most_recent_uploaded['path']
|
34 |
-
file_manifest = [f for f in glob.glob(f'{path}/**/*.jpg', recursive=True)]
|
35 |
-
file_manifest += [f for f in glob.glob(f'{path}/**/*.jpeg', recursive=True)]
|
36 |
-
file_manifest += [f for f in glob.glob(f'{path}/**/*.png', recursive=True)]
|
37 |
-
if len(file_manifest) == 0: return False, None
|
38 |
-
return True, file_manifest # most_recent_uploaded is new
|
39 |
-
else:
|
40 |
-
return False, None # most_recent_uploaded is too old
|
41 |
|
42 |
def report_invalid_key(key):
|
43 |
if get_conf("BLOCK_INVALID_APIKEY"):
|
@@ -258,10 +245,6 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg,
|
|
258 |
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
259 |
return chatbot, history
|
260 |
|
261 |
-
# Function to encode the image
|
262 |
-
def encode_image(image_path):
|
263 |
-
with open(image_path, "rb") as image_file:
|
264 |
-
return base64.b64encode(image_file.read()).decode('utf-8')
|
265 |
|
266 |
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
267 |
"""
|
|
|
15 |
import base64
|
16 |
import os
|
17 |
import glob
|
18 |
+
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
|
19 |
+
update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files
|
20 |
+
|
21 |
|
|
|
22 |
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
23 |
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
24 |
|
25 |
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
26 |
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def report_invalid_key(key):
|
30 |
if get_conf("BLOCK_INVALID_APIKEY"):
|
|
|
245 |
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
246 |
return chatbot, history
|
247 |
|
|
|
|
|
|
|
|
|
248 |
|
249 |
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
250 |
"""
|
request_llms/bridge_deepseekcoder.py
CHANGED
@@ -6,6 +6,7 @@ from toolbox import ProxyNetworkActivate
|
|
6 |
from toolbox import get_conf
|
7 |
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
8 |
from threading import Thread
|
|
|
9 |
|
10 |
def download_huggingface_model(model_name, max_retry, local_dir):
|
11 |
from huggingface_hub import snapshot_download
|
@@ -36,9 +37,46 @@ class GetCoderLMHandle(LocalLLMHandle):
|
|
36 |
# tokenizer = download_huggingface_model(model_name, max_retry=128, local_dir=local_dir)
|
37 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
38 |
self._streamer = TextIteratorStreamer(tokenizer)
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
if get_conf('LOCAL_MODEL_DEVICE') != 'cpu':
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
return model, tokenizer
|
43 |
|
44 |
def llm_stream_generator(self, **kwargs):
|
@@ -54,7 +92,10 @@ class GetCoderLMHandle(LocalLLMHandle):
|
|
54 |
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
55 |
history.append({ 'role': 'user', 'content': query})
|
56 |
messages = history
|
57 |
-
inputs = self._tokenizer.apply_chat_template(messages, return_tensors="pt")
|
|
|
|
|
|
|
58 |
generation_kwargs = dict(
|
59 |
inputs=inputs,
|
60 |
max_new_tokens=max_length,
|
|
|
6 |
from toolbox import get_conf
|
7 |
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
8 |
from threading import Thread
|
9 |
+
import torch
|
10 |
|
11 |
def download_huggingface_model(model_name, max_retry, local_dir):
|
12 |
from huggingface_hub import snapshot_download
|
|
|
37 |
# tokenizer = download_huggingface_model(model_name, max_retry=128, local_dir=local_dir)
|
38 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
39 |
self._streamer = TextIteratorStreamer(tokenizer)
|
40 |
+
device_map = {
|
41 |
+
"transformer.word_embeddings": 0,
|
42 |
+
"transformer.word_embeddings_layernorm": 0,
|
43 |
+
"lm_head": 0,
|
44 |
+
"transformer.h": 0,
|
45 |
+
"transformer.ln_f": 0,
|
46 |
+
"model.embed_tokens": 0,
|
47 |
+
"model.layers": 0,
|
48 |
+
"model.norm": 0,
|
49 |
+
}
|
50 |
+
|
51 |
+
# 检查量化配置
|
52 |
+
quantization_type = get_conf('LOCAL_MODEL_QUANT')
|
53 |
+
|
54 |
if get_conf('LOCAL_MODEL_DEVICE') != 'cpu':
|
55 |
+
if quantization_type == "INT8":
|
56 |
+
from transformers import BitsAndBytesConfig
|
57 |
+
# 使用 INT8 量化
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, load_in_8bit=True,
|
59 |
+
device_map=device_map)
|
60 |
+
elif quantization_type == "INT4":
|
61 |
+
from transformers import BitsAndBytesConfig
|
62 |
+
# 使用 INT4 量化
|
63 |
+
bnb_config = BitsAndBytesConfig(
|
64 |
+
load_in_4bit=True,
|
65 |
+
bnb_4bit_use_double_quant=True,
|
66 |
+
bnb_4bit_quant_type="nf4",
|
67 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
68 |
+
)
|
69 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
|
70 |
+
quantization_config=bnb_config, device_map=device_map)
|
71 |
+
else:
|
72 |
+
# 使用默认的 FP16
|
73 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
|
74 |
+
torch_dtype=torch.bfloat16, device_map=device_map)
|
75 |
+
else:
|
76 |
+
# CPU 模式
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
|
78 |
+
torch_dtype=torch.bfloat16)
|
79 |
+
|
80 |
return model, tokenizer
|
81 |
|
82 |
def llm_stream_generator(self, **kwargs):
|
|
|
92 |
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
93 |
history.append({ 'role': 'user', 'content': query})
|
94 |
messages = history
|
95 |
+
inputs = self._tokenizer.apply_chat_template(messages, return_tensors="pt")
|
96 |
+
if inputs.shape[1] > max_length:
|
97 |
+
inputs = inputs[:, -max_length:]
|
98 |
+
inputs = inputs.to(self._model.device)
|
99 |
generation_kwargs = dict(
|
100 |
inputs=inputs,
|
101 |
max_new_tokens=max_length,
|
request_llms/bridge_qwen.py
CHANGED
@@ -1,67 +1,62 @@
|
|
1 |
-
model_name = "Qwen"
|
2 |
-
cmd_to_install = "`pip install -r request_llms/requirements_qwen.txt`"
|
3 |
-
|
4 |
-
|
5 |
-
from transformers import AutoModel, AutoTokenizer
|
6 |
import time
|
7 |
-
import
|
8 |
-
import
|
9 |
-
from toolbox import
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import time
|
2 |
+
import os
|
3 |
+
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
4 |
+
from toolbox import check_packages, report_exception
|
5 |
+
|
6 |
+
model_name = 'Qwen'
|
7 |
+
|
8 |
+
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
9 |
+
"""
|
10 |
+
⭐多线程方法
|
11 |
+
函数的说明请见 request_llms/bridge_all.py
|
12 |
+
"""
|
13 |
+
watch_dog_patience = 5
|
14 |
+
response = ""
|
15 |
+
|
16 |
+
from .com_qwenapi import QwenRequestInstance
|
17 |
+
sri = QwenRequestInstance()
|
18 |
+
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
|
19 |
+
if len(observe_window) >= 1:
|
20 |
+
observe_window[0] = response
|
21 |
+
if len(observe_window) >= 2:
|
22 |
+
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
23 |
+
return response
|
24 |
+
|
25 |
+
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
26 |
+
"""
|
27 |
+
⭐单线程方法
|
28 |
+
函数的说明请见 request_llms/bridge_all.py
|
29 |
+
"""
|
30 |
+
chatbot.append((inputs, ""))
|
31 |
+
yield from update_ui(chatbot=chatbot, history=history)
|
32 |
+
|
33 |
+
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
34 |
+
try:
|
35 |
+
check_packages(["dashscope"])
|
36 |
+
except:
|
37 |
+
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade dashscope```。",
|
38 |
+
chatbot=chatbot, history=history, delay=0)
|
39 |
+
return
|
40 |
+
|
41 |
+
# 检查DASHSCOPE_API_KEY
|
42 |
+
if get_conf("DASHSCOPE_API_KEY") == "":
|
43 |
+
yield from update_ui_lastest_msg(f"请配置 DASHSCOPE_API_KEY。",
|
44 |
+
chatbot=chatbot, history=history, delay=0)
|
45 |
+
return
|
46 |
+
|
47 |
+
if additional_fn is not None:
|
48 |
+
from core_functional import handle_core_functionality
|
49 |
+
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
50 |
+
|
51 |
+
# 开始接收回复
|
52 |
+
from .com_qwenapi import QwenRequestInstance
|
53 |
+
sri = QwenRequestInstance()
|
54 |
+
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
55 |
+
chatbot[-1] = (inputs, response)
|
56 |
+
yield from update_ui(chatbot=chatbot, history=history)
|
57 |
+
|
58 |
+
# 总结输出
|
59 |
+
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
60 |
+
response = f"[Local Message] {model_name}响应异常 ..."
|
61 |
+
history.extend([inputs, response])
|
62 |
+
yield from update_ui(chatbot=chatbot, history=history)
|
request_llms/bridge_spark.py
CHANGED
@@ -26,7 +26,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|
26 |
|
27 |
from .com_sparkapi import SparkRequestInstance
|
28 |
sri = SparkRequestInstance()
|
29 |
-
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
|
30 |
if len(observe_window) >= 1:
|
31 |
observe_window[0] = response
|
32 |
if len(observe_window) >= 2:
|
@@ -52,7 +52,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|
52 |
# 开始接收回复
|
53 |
from .com_sparkapi import SparkRequestInstance
|
54 |
sri = SparkRequestInstance()
|
55 |
-
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
56 |
chatbot[-1] = (inputs, response)
|
57 |
yield from update_ui(chatbot=chatbot, history=history)
|
58 |
|
|
|
26 |
|
27 |
from .com_sparkapi import SparkRequestInstance
|
28 |
sri = SparkRequestInstance()
|
29 |
+
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt, use_image_api=False):
|
30 |
if len(observe_window) >= 1:
|
31 |
observe_window[0] = response
|
32 |
if len(observe_window) >= 2:
|
|
|
52 |
# 开始接收回复
|
53 |
from .com_sparkapi import SparkRequestInstance
|
54 |
sri = SparkRequestInstance()
|
55 |
+
for response in sri.generate(inputs, llm_kwargs, history, system_prompt, use_image_api=True):
|
56 |
chatbot[-1] = (inputs, response)
|
57 |
yield from update_ui(chatbot=chatbot, history=history)
|
58 |
|
request_llms/com_sparkapi.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from toolbox import get_conf
|
2 |
import base64
|
3 |
import datetime
|
4 |
import hashlib
|
@@ -65,18 +65,19 @@ class SparkRequestInstance():
|
|
65 |
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat"
|
66 |
self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat"
|
67 |
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat"
|
|
|
68 |
|
69 |
self.time_to_yield_event = threading.Event()
|
70 |
self.time_to_exit_event = threading.Event()
|
71 |
|
72 |
self.result_buf = ""
|
73 |
|
74 |
-
def generate(self, inputs, llm_kwargs, history, system_prompt):
|
75 |
llm_kwargs = llm_kwargs
|
76 |
history = history
|
77 |
system_prompt = system_prompt
|
78 |
import _thread as thread
|
79 |
-
thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt))
|
80 |
while True:
|
81 |
self.time_to_yield_event.wait(timeout=1)
|
82 |
if self.time_to_yield_event.is_set():
|
@@ -85,14 +86,20 @@ class SparkRequestInstance():
|
|
85 |
return self.result_buf
|
86 |
|
87 |
|
88 |
-
def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt):
|
89 |
if llm_kwargs['llm_model'] == 'sparkv2':
|
90 |
gpt_url = self.gpt_url_v2
|
91 |
elif llm_kwargs['llm_model'] == 'sparkv3':
|
92 |
gpt_url = self.gpt_url_v3
|
93 |
else:
|
94 |
gpt_url = self.gpt_url
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url)
|
97 |
websocket.enableTrace(False)
|
98 |
wsUrl = wsParam.create_url()
|
@@ -101,9 +108,8 @@ class SparkRequestInstance():
|
|
101 |
def on_open(ws):
|
102 |
import _thread as thread
|
103 |
thread.start_new_thread(run, (ws,))
|
104 |
-
|
105 |
def run(ws, *args):
|
106 |
-
data = json.dumps(gen_params(ws.appid, *ws.all_args))
|
107 |
ws.send(data)
|
108 |
|
109 |
# 收到websocket消息的处理
|
@@ -142,9 +148,18 @@ class SparkRequestInstance():
|
|
142 |
ws.all_args = (inputs, llm_kwargs, history, system_prompt)
|
143 |
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
|
144 |
|
145 |
-
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
|
146 |
conversation_cnt = len(history) // 2
|
147 |
-
messages = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
if conversation_cnt:
|
149 |
for index in range(0, 2*conversation_cnt, 2):
|
150 |
what_i_have_asked = {}
|
@@ -167,7 +182,7 @@ def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
|
|
167 |
return messages
|
168 |
|
169 |
|
170 |
-
def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
|
171 |
"""
|
172 |
通过appid和用户的提问来生成请参数
|
173 |
"""
|
@@ -176,6 +191,8 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
|
|
176 |
"sparkv2": "generalv2",
|
177 |
"sparkv3": "generalv3",
|
178 |
}
|
|
|
|
|
179 |
data = {
|
180 |
"header": {
|
181 |
"app_id": appid,
|
@@ -183,7 +200,7 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
|
|
183 |
},
|
184 |
"parameter": {
|
185 |
"chat": {
|
186 |
-
"domain":
|
187 |
"temperature": llm_kwargs["temperature"],
|
188 |
"random_threshold": 0.5,
|
189 |
"max_tokens": 4096,
|
@@ -192,7 +209,7 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
|
|
192 |
},
|
193 |
"payload": {
|
194 |
"message": {
|
195 |
-
"text": generate_message_payload(inputs, llm_kwargs, history, system_prompt)
|
196 |
}
|
197 |
}
|
198 |
}
|
|
|
1 |
+
from toolbox import get_conf, get_pictures_list, encode_image
|
2 |
import base64
|
3 |
import datetime
|
4 |
import hashlib
|
|
|
65 |
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat"
|
66 |
self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat"
|
67 |
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat"
|
68 |
+
self.gpt_url_img = "wss://spark-api.cn-huabei-1.xf-yun.com/v2.1/image"
|
69 |
|
70 |
self.time_to_yield_event = threading.Event()
|
71 |
self.time_to_exit_event = threading.Event()
|
72 |
|
73 |
self.result_buf = ""
|
74 |
|
75 |
+
def generate(self, inputs, llm_kwargs, history, system_prompt, use_image_api=False):
|
76 |
llm_kwargs = llm_kwargs
|
77 |
history = history
|
78 |
system_prompt = system_prompt
|
79 |
import _thread as thread
|
80 |
+
thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt, use_image_api))
|
81 |
while True:
|
82 |
self.time_to_yield_event.wait(timeout=1)
|
83 |
if self.time_to_yield_event.is_set():
|
|
|
86 |
return self.result_buf
|
87 |
|
88 |
|
89 |
+
def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt, use_image_api):
|
90 |
if llm_kwargs['llm_model'] == 'sparkv2':
|
91 |
gpt_url = self.gpt_url_v2
|
92 |
elif llm_kwargs['llm_model'] == 'sparkv3':
|
93 |
gpt_url = self.gpt_url_v3
|
94 |
else:
|
95 |
gpt_url = self.gpt_url
|
96 |
+
file_manifest = []
|
97 |
+
if use_image_api and llm_kwargs.get('most_recent_uploaded'):
|
98 |
+
if llm_kwargs['most_recent_uploaded'].get('path'):
|
99 |
+
file_manifest = get_pictures_list(llm_kwargs['most_recent_uploaded']['path'])
|
100 |
+
if len(file_manifest) > 0:
|
101 |
+
print('正在使用讯飞图片理解API')
|
102 |
+
gpt_url = self.gpt_url_img
|
103 |
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url)
|
104 |
websocket.enableTrace(False)
|
105 |
wsUrl = wsParam.create_url()
|
|
|
108 |
def on_open(ws):
|
109 |
import _thread as thread
|
110 |
thread.start_new_thread(run, (ws,))
|
|
|
111 |
def run(ws, *args):
|
112 |
+
data = json.dumps(gen_params(ws.appid, *ws.all_args, file_manifest))
|
113 |
ws.send(data)
|
114 |
|
115 |
# 收到websocket消息的处理
|
|
|
148 |
ws.all_args = (inputs, llm_kwargs, history, system_prompt)
|
149 |
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
|
150 |
|
151 |
+
def generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest):
|
152 |
conversation_cnt = len(history) // 2
|
153 |
+
messages = []
|
154 |
+
if file_manifest:
|
155 |
+
base64_images = []
|
156 |
+
for image_path in file_manifest:
|
157 |
+
base64_images.append(encode_image(image_path))
|
158 |
+
for img_s in base64_images:
|
159 |
+
if img_s not in str(messages):
|
160 |
+
messages.append({"role": "user", "content": img_s, "content_type": "image"})
|
161 |
+
else:
|
162 |
+
messages = [{"role": "system", "content": system_prompt}]
|
163 |
if conversation_cnt:
|
164 |
for index in range(0, 2*conversation_cnt, 2):
|
165 |
what_i_have_asked = {}
|
|
|
182 |
return messages
|
183 |
|
184 |
|
185 |
+
def gen_params(appid, inputs, llm_kwargs, history, system_prompt, file_manifest):
|
186 |
"""
|
187 |
通过appid和用户的提问来生成请参数
|
188 |
"""
|
|
|
191 |
"sparkv2": "generalv2",
|
192 |
"sparkv3": "generalv3",
|
193 |
}
|
194 |
+
domains_select = domains[llm_kwargs['llm_model']]
|
195 |
+
if file_manifest: domains_select = 'image'
|
196 |
data = {
|
197 |
"header": {
|
198 |
"app_id": appid,
|
|
|
200 |
},
|
201 |
"parameter": {
|
202 |
"chat": {
|
203 |
+
"domain": domains_select,
|
204 |
"temperature": llm_kwargs["temperature"],
|
205 |
"random_threshold": 0.5,
|
206 |
"max_tokens": 4096,
|
|
|
209 |
},
|
210 |
"payload": {
|
211 |
"message": {
|
212 |
+
"text": generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest)
|
213 |
}
|
214 |
}
|
215 |
}
|
request_llms/local_llm_class.py
CHANGED
@@ -183,11 +183,11 @@ class LocalLLMHandle(Process):
|
|
183 |
def stream_chat(self, **kwargs):
|
184 |
# ⭐run in main process
|
185 |
if self.get_state() == "`准备就绪`":
|
186 |
-
yield "
|
187 |
|
188 |
with self.threadLock:
|
189 |
if self.parent.poll():
|
190 |
-
yield "
|
191 |
self.clear_pending_messages()
|
192 |
self.parent.send(kwargs)
|
193 |
std_out = ""
|
|
|
183 |
def stream_chat(self, **kwargs):
|
184 |
# ⭐run in main process
|
185 |
if self.get_state() == "`准备就绪`":
|
186 |
+
yield "`正在等待线程锁,排队中请稍候 ...`"
|
187 |
|
188 |
with self.threadLock:
|
189 |
if self.parent.poll():
|
190 |
+
yield "`排队中请稍候 ...`"
|
191 |
self.clear_pending_messages()
|
192 |
self.parent.send(kwargs)
|
193 |
std_out = ""
|
request_llms/requirements_chatglm_onnx.txt
CHANGED
@@ -6,5 +6,3 @@ sentencepiece
|
|
6 |
numpy
|
7 |
onnxruntime
|
8 |
sentencepiece
|
9 |
-
streamlit
|
10 |
-
streamlit-chat
|
|
|
6 |
numpy
|
7 |
onnxruntime
|
8 |
sentencepiece
|
|
|
|
request_llms/requirements_moss.txt
CHANGED
@@ -5,5 +5,4 @@ accelerate
|
|
5 |
matplotlib
|
6 |
huggingface_hub
|
7 |
triton
|
8 |
-
streamlit
|
9 |
|
|
|
5 |
matplotlib
|
6 |
huggingface_hub
|
7 |
triton
|
|
|
8 |
|
request_llms/requirements_qwen.txt
CHANGED
@@ -1,2 +1 @@
|
|
1 |
-
|
2 |
-
transformers_stream_generator
|
|
|
1 |
+
dashscope
|
|
requirements.txt
CHANGED
@@ -2,6 +2,7 @@ pydantic==1.10.11
|
|
2 |
pypdf2==2.12.1
|
3 |
tiktoken>=0.3.3
|
4 |
requests[socks]
|
|
|
5 |
transformers>=4.27.1
|
6 |
scipdf_parser>=0.52
|
7 |
python-markdown-math
|
|
|
2 |
pypdf2==2.12.1
|
3 |
tiktoken>=0.3.3
|
4 |
requests[socks]
|
5 |
+
protobuf==3.18
|
6 |
transformers>=4.27.1
|
7 |
scipdf_parser>=0.52
|
8 |
python-markdown-math
|
tests/test_llms.py
CHANGED
@@ -16,8 +16,9 @@ if __name__ == "__main__":
|
|
16 |
# from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
|
17 |
# from request_llms.bridge_claude import predict_no_ui_long_connection
|
18 |
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
19 |
-
from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
|
20 |
-
# from request_llms.
|
|
|
21 |
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
22 |
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
23 |
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
|
|
16 |
# from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
|
17 |
# from request_llms.bridge_claude import predict_no_ui_long_connection
|
18 |
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
19 |
+
# from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
|
20 |
+
# from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
|
21 |
+
from request_llms.bridge_qwen_local import predict_no_ui_long_connection
|
22 |
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
23 |
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
24 |
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
tests/test_plugins.py
CHANGED
@@ -48,11 +48,11 @@ if __name__ == "__main__":
|
|
48 |
# for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
|
49 |
# plugin_test(plugin='crazy_functions.批量Markdown翻译->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
|
50 |
|
51 |
-
# plugin_test(plugin='crazy_functions
|
52 |
|
53 |
-
# plugin_test(plugin='crazy_functions
|
54 |
|
55 |
-
# plugin_test(plugin='crazy_functions
|
56 |
|
57 |
# plugin_test(plugin='crazy_functions.Latex输出PDF结果->Latex翻译中文并重新编译PDF', main_input="2210.03629")
|
58 |
|
|
|
48 |
# for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
|
49 |
# plugin_test(plugin='crazy_functions.批量Markdown翻译->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
|
50 |
|
51 |
+
# plugin_test(plugin='crazy_functions.知识库文件注入->知识库文件注入', main_input="./")
|
52 |
|
53 |
+
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="What is the installation method?")
|
54 |
|
55 |
+
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="远程云服务器部署?")
|
56 |
|
57 |
# plugin_test(plugin='crazy_functions.Latex输出PDF结果->Latex翻译中文并重新编译PDF', main_input="2210.03629")
|
58 |
|
tests/test_utils.py
CHANGED
@@ -56,11 +56,11 @@ vt.get_plugin_handle = silence_stdout_fn(get_plugin_handle)
|
|
56 |
vt.get_plugin_default_kwargs = silence_stdout_fn(get_plugin_default_kwargs)
|
57 |
vt.get_chat_handle = silence_stdout_fn(get_chat_handle)
|
58 |
vt.get_chat_default_kwargs = silence_stdout_fn(get_chat_default_kwargs)
|
59 |
-
vt.chat_to_markdown_str = chat_to_markdown_str
|
60 |
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
|
61 |
vt.get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
|
62 |
|
63 |
-
def plugin_test(main_input, plugin, advanced_arg=None):
|
64 |
from rich.live import Live
|
65 |
from rich.markdown import Markdown
|
66 |
|
@@ -72,7 +72,10 @@ def plugin_test(main_input, plugin, advanced_arg=None):
|
|
72 |
plugin_kwargs['main_input'] = main_input
|
73 |
if advanced_arg is not None:
|
74 |
plugin_kwargs['plugin_kwargs'] = advanced_arg
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
with Live(Markdown(""), auto_refresh=False, vertical_overflow="visible") as live:
|
78 |
for cookies, chat, hist, msg in my_working_plugin:
|
|
|
56 |
vt.get_plugin_default_kwargs = silence_stdout_fn(get_plugin_default_kwargs)
|
57 |
vt.get_chat_handle = silence_stdout_fn(get_chat_handle)
|
58 |
vt.get_chat_default_kwargs = silence_stdout_fn(get_chat_default_kwargs)
|
59 |
+
vt.chat_to_markdown_str = (chat_to_markdown_str)
|
60 |
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
|
61 |
vt.get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
|
62 |
|
63 |
+
def plugin_test(main_input, plugin, advanced_arg=None, debug=True):
|
64 |
from rich.live import Live
|
65 |
from rich.markdown import Markdown
|
66 |
|
|
|
72 |
plugin_kwargs['main_input'] = main_input
|
73 |
if advanced_arg is not None:
|
74 |
plugin_kwargs['plugin_kwargs'] = advanced_arg
|
75 |
+
if debug:
|
76 |
+
my_working_plugin = (plugin)(**plugin_kwargs)
|
77 |
+
else:
|
78 |
+
my_working_plugin = silence_stdout(plugin)(**plugin_kwargs)
|
79 |
|
80 |
with Live(Markdown(""), auto_refresh=False, vertical_overflow="visible") as live:
|
81 |
for cookies, chat, hist, msg in my_working_plugin:
|
themes/common.js
CHANGED
@@ -1,9 +1,13 @@
|
|
|
|
|
|
|
|
|
|
1 |
function gradioApp() {
|
2 |
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
3 |
const elems = document.getElementsByTagName('gradio-app');
|
4 |
const elem = elems.length == 0 ? document : elems[0];
|
5 |
if (elem !== document) {
|
6 |
-
elem.getElementById = function(id) {
|
7 |
return document.getElementById(id);
|
8 |
};
|
9 |
}
|
@@ -12,31 +16,76 @@ function gradioApp() {
|
|
12 |
|
13 |
function setCookie(name, value, days) {
|
14 |
var expires = "";
|
15 |
-
|
16 |
if (days) {
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
}
|
21 |
-
|
22 |
document.cookie = name + "=" + value + expires + "; path=/";
|
23 |
}
|
24 |
|
25 |
function getCookie(name) {
|
26 |
var decodedCookie = decodeURIComponent(document.cookie);
|
27 |
var cookies = decodedCookie.split(';');
|
28 |
-
|
29 |
for (var i = 0; i < cookies.length; i++) {
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
}
|
36 |
-
|
37 |
return null;
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
function addCopyButton(botElement) {
|
41 |
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
42 |
// Copy bot button
|
@@ -49,7 +98,7 @@ function addCopyButton(botElement) {
|
|
49 |
// messageBtnColumnElement.remove();
|
50 |
return;
|
51 |
}
|
52 |
-
|
53 |
var copyButton = document.createElement('button');
|
54 |
copyButton.classList.add('copy-bot-btn');
|
55 |
copyButton.setAttribute('aria-label', 'Copy');
|
@@ -98,47 +147,61 @@ function chatbotContentChanged(attempt = 1, force = false) {
|
|
98 |
}
|
99 |
}
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
// 自动调整高度
|
103 |
-
function update_height(){
|
104 |
-
var {
|
105 |
-
if (
|
106 |
-
|
107 |
-
|
108 |
-
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
|
109 |
}
|
110 |
}
|
111 |
|
112 |
-
function update_height_slow(){
|
113 |
-
var {
|
114 |
-
if (
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
new_panel_height = panel_height_target;
|
119 |
}
|
120 |
-
// console.log(chatbot_height,
|
121 |
var pixelString = new_panel_height.toString() + 'px';
|
122 |
-
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
|
123 |
}
|
124 |
}
|
125 |
-
|
126 |
update_height();
|
127 |
-
setInterval(function() {
|
128 |
update_height_slow()
|
129 |
-
}, 50); // 每
|
130 |
}
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
}
|
140 |
|
141 |
-
function get_elements(consider_state_panel=false) {
|
142 |
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
|
143 |
if (!chatbot) {
|
144 |
chatbot = document.querySelector('#gpt-chatbot');
|
@@ -147,17 +210,292 @@ function get_elements(consider_state_panel=false) {
|
|
147 |
const panel2 = document.querySelector('#basic-panel').getBoundingClientRect()
|
148 |
const panel3 = document.querySelector('#plugin-panel').getBoundingClientRect();
|
149 |
// const panel4 = document.querySelector('#interact-panel').getBoundingClientRect();
|
150 |
-
const panel5 = document.querySelector('#input-panel2').getBoundingClientRect();
|
151 |
const panel_active = document.querySelector('#state-panel').getBoundingClientRect();
|
152 |
-
if (consider_state_panel || panel_active.height < 25){
|
153 |
document.state_panel_height = panel_active.height;
|
154 |
}
|
155 |
// 25 是chatbot的label高度, 16 是右侧的gap
|
156 |
-
var
|
157 |
// 禁止动态的state-panel高度影响
|
158 |
-
|
159 |
-
var
|
160 |
var chatbot_height = chatbot.style.height;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
var chatbot_height = parseInt(chatbot_height);
|
162 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
}
|
|
|
1 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
2 |
+
// 第 1 部分: 工具函数
|
3 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
4 |
+
|
5 |
function gradioApp() {
|
6 |
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
7 |
const elems = document.getElementsByTagName('gradio-app');
|
8 |
const elem = elems.length == 0 ? document : elems[0];
|
9 |
if (elem !== document) {
|
10 |
+
elem.getElementById = function (id) {
|
11 |
return document.getElementById(id);
|
12 |
};
|
13 |
}
|
|
|
16 |
|
17 |
function setCookie(name, value, days) {
|
18 |
var expires = "";
|
19 |
+
|
20 |
if (days) {
|
21 |
+
var date = new Date();
|
22 |
+
date.setTime(date.getTime() + (days * 24 * 60 * 60 * 1000));
|
23 |
+
expires = "; expires=" + date.toUTCString();
|
24 |
}
|
25 |
+
|
26 |
document.cookie = name + "=" + value + expires + "; path=/";
|
27 |
}
|
28 |
|
29 |
function getCookie(name) {
|
30 |
var decodedCookie = decodeURIComponent(document.cookie);
|
31 |
var cookies = decodedCookie.split(';');
|
32 |
+
|
33 |
for (var i = 0; i < cookies.length; i++) {
|
34 |
+
var cookie = cookies[i].trim();
|
35 |
+
|
36 |
+
if (cookie.indexOf(name + "=") === 0) {
|
37 |
+
return cookie.substring(name.length + 1, cookie.length);
|
38 |
+
}
|
39 |
}
|
40 |
+
|
41 |
return null;
|
42 |
+
}
|
43 |
+
|
44 |
+
let toastCount = 0;
|
45 |
+
function toast_push(msg, duration) {
|
46 |
+
duration = isNaN(duration) ? 3000 : duration;
|
47 |
+
const existingToasts = document.querySelectorAll('.toast');
|
48 |
+
existingToasts.forEach(toast => {
|
49 |
+
toast.style.top = `${parseInt(toast.style.top, 10) - 70}px`;
|
50 |
+
});
|
51 |
+
const m = document.createElement('div');
|
52 |
+
m.innerHTML = msg;
|
53 |
+
m.classList.add('toast');
|
54 |
+
m.style.cssText = `font-size: var(--text-md) !important; color: rgb(255, 255, 255); background-color: rgba(0, 0, 0, 0.6); padding: 10px 15px; border-radius: 4px; position: fixed; top: ${50 + toastCount * 70}%; left: 50%; transform: translateX(-50%); width: auto; text-align: center; transition: top 0.3s;`;
|
55 |
+
document.body.appendChild(m);
|
56 |
+
setTimeout(function () {
|
57 |
+
m.style.opacity = '0';
|
58 |
+
setTimeout(function () {
|
59 |
+
document.body.removeChild(m);
|
60 |
+
toastCount--;
|
61 |
+
}, 500);
|
62 |
+
}, duration);
|
63 |
+
toastCount++;
|
64 |
+
}
|
65 |
+
|
66 |
+
function toast_up(msg) {
|
67 |
+
var m = document.getElementById('toast_up');
|
68 |
+
if (m) {
|
69 |
+
document.body.removeChild(m); // remove the loader from the body
|
70 |
+
}
|
71 |
+
m = document.createElement('div');
|
72 |
+
m.id = 'toast_up';
|
73 |
+
m.innerHTML = msg;
|
74 |
+
m.style.cssText = "font-size: var(--text-md) !important; color: rgb(255, 255, 255); background-color: rgba(0, 0, 100, 0.6); padding: 10px 15px; margin: 0 0 0 -60px; border-radius: 4px; position: fixed; top: 50%; left: 50%; width: auto; text-align: center;";
|
75 |
+
document.body.appendChild(m);
|
76 |
+
}
|
77 |
+
function toast_down() {
|
78 |
+
var m = document.getElementById('toast_up');
|
79 |
+
if (m) {
|
80 |
+
document.body.removeChild(m); // remove the loader from the body
|
81 |
+
}
|
82 |
+
}
|
83 |
+
|
84 |
+
|
85 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
86 |
+
// 第 2 部分: 复制按钮
|
87 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
88 |
+
|
89 |
function addCopyButton(botElement) {
|
90 |
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
91 |
// Copy bot button
|
|
|
98 |
// messageBtnColumnElement.remove();
|
99 |
return;
|
100 |
}
|
101 |
+
|
102 |
var copyButton = document.createElement('button');
|
103 |
copyButton.classList.add('copy-bot-btn');
|
104 |
copyButton.setAttribute('aria-label', 'Copy');
|
|
|
147 |
}
|
148 |
}
|
149 |
|
150 |
+
|
151 |
+
|
152 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
153 |
+
// 第 3 部分: chatbot动态高度调整
|
154 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
155 |
+
|
156 |
+
function chatbotAutoHeight() {
|
157 |
// 自动调整高度
|
158 |
+
function update_height() {
|
159 |
+
var { height_target, chatbot_height, chatbot } = get_elements(true);
|
160 |
+
if (height_target != chatbot_height) {
|
161 |
+
var pixelString = height_target.toString() + 'px';
|
162 |
+
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
|
|
|
163 |
}
|
164 |
}
|
165 |
|
166 |
+
function update_height_slow() {
|
167 |
+
var { height_target, chatbot_height, chatbot } = get_elements();
|
168 |
+
if (height_target != chatbot_height) {
|
169 |
+
new_panel_height = (height_target - chatbot_height) * 0.5 + chatbot_height;
|
170 |
+
if (Math.abs(new_panel_height - height_target) < 10) {
|
171 |
+
new_panel_height = height_target;
|
|
|
172 |
}
|
173 |
+
// console.log(chatbot_height, height_target, new_panel_height);
|
174 |
var pixelString = new_panel_height.toString() + 'px';
|
175 |
+
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
|
176 |
}
|
177 |
}
|
178 |
+
monitoring_input_box()
|
179 |
update_height();
|
180 |
+
setInterval(function () {
|
181 |
update_height_slow()
|
182 |
+
}, 50); // 每50毫秒执行一次
|
183 |
}
|
184 |
|
185 |
+
swapped = false;
|
186 |
+
function swap_input_area() {
|
187 |
+
// Get the elements to be swapped
|
188 |
+
var element1 = document.querySelector("#input-panel");
|
189 |
+
var element2 = document.querySelector("#basic-panel");
|
190 |
+
|
191 |
+
// Get the parent of the elements
|
192 |
+
var parent = element1.parentNode;
|
193 |
+
|
194 |
+
// Get the next sibling of element2
|
195 |
+
var nextSibling = element2.nextSibling;
|
196 |
+
|
197 |
+
// Swap the elements
|
198 |
+
parent.insertBefore(element2, element1);
|
199 |
+
parent.insertBefore(element1, nextSibling);
|
200 |
+
if (swapped) {swapped = false;}
|
201 |
+
else {swapped = true;}
|
202 |
}
|
203 |
|
204 |
+
function get_elements(consider_state_panel = false) {
|
205 |
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
|
206 |
if (!chatbot) {
|
207 |
chatbot = document.querySelector('#gpt-chatbot');
|
|
|
210 |
const panel2 = document.querySelector('#basic-panel').getBoundingClientRect()
|
211 |
const panel3 = document.querySelector('#plugin-panel').getBoundingClientRect();
|
212 |
// const panel4 = document.querySelector('#interact-panel').getBoundingClientRect();
|
|
|
213 |
const panel_active = document.querySelector('#state-panel').getBoundingClientRect();
|
214 |
+
if (consider_state_panel || panel_active.height < 25) {
|
215 |
document.state_panel_height = panel_active.height;
|
216 |
}
|
217 |
// 25 是chatbot的label高度, 16 是右侧的gap
|
218 |
+
var height_target = panel1.height + panel2.height + panel3.height + 0 + 0 - 25 + 16 * 2;
|
219 |
// 禁止动态的state-panel高度影响
|
220 |
+
height_target = height_target + (document.state_panel_height - panel_active.height)
|
221 |
+
var height_target = parseInt(height_target);
|
222 |
var chatbot_height = chatbot.style.height;
|
223 |
+
// 交换输入区位置,使得输入区始终可用
|
224 |
+
if (!swapped){
|
225 |
+
if (panel1.top!=0 && panel1.top < 0){ swap_input_area(); }
|
226 |
+
}
|
227 |
+
else if (swapped){
|
228 |
+
if (panel2.top!=0 && panel2.top > 0){ swap_input_area(); }
|
229 |
+
}
|
230 |
+
// 调整高度
|
231 |
+
const err_tor = 5;
|
232 |
+
if (Math.abs(panel1.left - chatbot.getBoundingClientRect().left) < err_tor){
|
233 |
+
// 是否处于窄屏模式
|
234 |
+
height_target = window.innerHeight * 0.6;
|
235 |
+
}else{
|
236 |
+
// 调整高度
|
237 |
+
const chatbot_height_exceed = 15;
|
238 |
+
const chatbot_height_exceed_m = 10;
|
239 |
+
b_panel = Math.max(panel1.bottom, panel2.bottom, panel3.bottom)
|
240 |
+
if (b_panel >= window.innerHeight - chatbot_height_exceed) {
|
241 |
+
height_target = window.innerHeight - chatbot.getBoundingClientRect().top - chatbot_height_exceed_m;
|
242 |
+
}
|
243 |
+
else if (b_panel < window.innerHeight * 0.75) {
|
244 |
+
height_target = window.innerHeight * 0.8;
|
245 |
+
}
|
246 |
+
}
|
247 |
var chatbot_height = parseInt(chatbot_height);
|
248 |
+
return { height_target, chatbot_height, chatbot };
|
249 |
+
}
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
254 |
+
// 第 4 部分: 粘贴、拖拽文件上传
|
255 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
256 |
+
|
257 |
+
var elem_upload = null;
|
258 |
+
var elem_upload_float = null;
|
259 |
+
var elem_input_main = null;
|
260 |
+
var elem_input_float = null;
|
261 |
+
var elem_chatbot = null;
|
262 |
+
var exist_file_msg = '⚠️请先删除上传区(左上方)中的历史文件,再尝试上传。'
|
263 |
+
|
264 |
+
function add_func_paste(input) {
|
265 |
+
let paste_files = [];
|
266 |
+
if (input) {
|
267 |
+
input.addEventListener("paste", async function (e) {
|
268 |
+
const clipboardData = e.clipboardData || window.clipboardData;
|
269 |
+
const items = clipboardData.items;
|
270 |
+
if (items) {
|
271 |
+
for (i = 0; i < items.length; i++) {
|
272 |
+
if (items[i].kind === "file") { // 确保是文件类型
|
273 |
+
const file = items[i].getAsFile();
|
274 |
+
// 将每一个粘贴的文件添加到files数组中
|
275 |
+
paste_files.push(file);
|
276 |
+
e.preventDefault(); // 避免粘贴文件名到输入框
|
277 |
+
}
|
278 |
+
}
|
279 |
+
if (paste_files.length > 0) {
|
280 |
+
// 按照文件列表执行批量上传逻辑
|
281 |
+
await upload_files(paste_files);
|
282 |
+
paste_files = []
|
283 |
+
|
284 |
+
}
|
285 |
+
}
|
286 |
+
});
|
287 |
+
}
|
288 |
+
}
|
289 |
+
|
290 |
+
function add_func_drag(elem) {
|
291 |
+
if (elem) {
|
292 |
+
const dragEvents = ["dragover"];
|
293 |
+
const leaveEvents = ["dragleave", "dragend", "drop"];
|
294 |
+
|
295 |
+
const onDrag = function (e) {
|
296 |
+
e.preventDefault();
|
297 |
+
e.stopPropagation();
|
298 |
+
if (elem_upload_float.querySelector("input[type=file]")) {
|
299 |
+
toast_up('⚠️释放以上传文件')
|
300 |
+
} else {
|
301 |
+
toast_up(exist_file_msg)
|
302 |
+
}
|
303 |
+
};
|
304 |
+
|
305 |
+
const onLeave = function (e) {
|
306 |
+
toast_down();
|
307 |
+
e.preventDefault();
|
308 |
+
e.stopPropagation();
|
309 |
+
};
|
310 |
+
|
311 |
+
dragEvents.forEach(event => {
|
312 |
+
elem.addEventListener(event, onDrag);
|
313 |
+
});
|
314 |
+
|
315 |
+
leaveEvents.forEach(event => {
|
316 |
+
elem.addEventListener(event, onLeave);
|
317 |
+
});
|
318 |
+
|
319 |
+
elem.addEventListener("drop", async function (e) {
|
320 |
+
const files = e.dataTransfer.files;
|
321 |
+
await upload_files(files);
|
322 |
+
});
|
323 |
+
}
|
324 |
+
}
|
325 |
+
|
326 |
+
async function upload_files(files) {
|
327 |
+
const uploadInputElement = elem_upload_float.querySelector("input[type=file]");
|
328 |
+
let totalSizeMb = 0
|
329 |
+
if (files && files.length > 0) {
|
330 |
+
// 执行具体的上传逻辑
|
331 |
+
if (uploadInputElement) {
|
332 |
+
for (let i = 0; i < files.length; i++) {
|
333 |
+
// 将从文件数组中获取的文件大小(单位为字节)转换为MB,
|
334 |
+
totalSizeMb += files[i].size / 1024 / 1024;
|
335 |
+
}
|
336 |
+
// 检查文件总大小是否超过20MB
|
337 |
+
if (totalSizeMb > 20) {
|
338 |
+
toast_push('⚠️文件夹大于 20MB 🚀上传文件中', 3000)
|
339 |
+
// return; // 如果超过了指定大小, 可以不进行后续上传操作
|
340 |
+
}
|
341 |
+
// 监听change事件, 原生Gradio可以实现
|
342 |
+
// uploadInputElement.addEventListener('change', function(){replace_input_string()});
|
343 |
+
let event = new Event("change");
|
344 |
+
Object.defineProperty(event, "target", { value: uploadInputElement, enumerable: true });
|
345 |
+
Object.defineProperty(event, "currentTarget", { value: uploadInputElement, enumerable: true });
|
346 |
+
Object.defineProperty(uploadInputElement, "files", { value: files, enumerable: true });
|
347 |
+
uploadInputElement.dispatchEvent(event);
|
348 |
+
} else {
|
349 |
+
toast_push(exist_file_msg, 3000)
|
350 |
+
}
|
351 |
+
}
|
352 |
+
}
|
353 |
+
|
354 |
+
function begin_loading_status() {
|
355 |
+
// Create the loader div and add styling
|
356 |
+
var loader = document.createElement('div');
|
357 |
+
loader.id = 'Js_File_Loading';
|
358 |
+
loader.style.position = "absolute";
|
359 |
+
loader.style.top = "50%";
|
360 |
+
loader.style.left = "50%";
|
361 |
+
loader.style.width = "60px";
|
362 |
+
loader.style.height = "60px";
|
363 |
+
loader.style.border = "16px solid #f3f3f3";
|
364 |
+
loader.style.borderTop = "16px solid #3498db";
|
365 |
+
loader.style.borderRadius = "50%";
|
366 |
+
loader.style.animation = "spin 2s linear infinite";
|
367 |
+
loader.style.transform = "translate(-50%, -50%)";
|
368 |
+
document.body.appendChild(loader); // Add the loader to the body
|
369 |
+
// Set the CSS animation keyframes
|
370 |
+
var styleSheet = document.createElement('style');
|
371 |
+
// styleSheet.type = 'text/css';
|
372 |
+
styleSheet.id = 'Js_File_Loading_Style'
|
373 |
+
styleSheet.innerText = `
|
374 |
+
@keyframes spin {
|
375 |
+
0% { transform: rotate(0deg); }
|
376 |
+
100% { transform: rotate(360deg); }
|
377 |
+
}`;
|
378 |
+
document.head.appendChild(styleSheet);
|
379 |
+
}
|
380 |
+
|
381 |
+
function cancel_loading_status() {
|
382 |
+
var loadingElement = document.getElementById('Js_File_Loading');
|
383 |
+
if (loadingElement) {
|
384 |
+
document.body.removeChild(loadingElement); // remove the loader from the body
|
385 |
+
}
|
386 |
+
var loadingStyle = document.getElementById('Js_File_Loading_Style');
|
387 |
+
if (loadingStyle) {
|
388 |
+
document.head.removeChild(loadingStyle);
|
389 |
+
}
|
390 |
+
let clearButton = document.querySelectorAll('div[id*="elem_upload"] button[aria-label="Clear"]');
|
391 |
+
for (let button of clearButton) {
|
392 |
+
button.addEventListener('click', function () {
|
393 |
+
setTimeout(function () {
|
394 |
+
register_upload_event();
|
395 |
+
}, 50);
|
396 |
+
});
|
397 |
+
}
|
398 |
+
}
|
399 |
+
|
400 |
+
function register_upload_event() {
|
401 |
+
elem_upload_float = document.getElementById('elem_upload_float')
|
402 |
+
const upload_component = elem_upload_float.querySelector("input[type=file]");
|
403 |
+
if (upload_component) {
|
404 |
+
upload_component.addEventListener('change', function (event) {
|
405 |
+
toast_push('正在上传中,请稍等。', 2000);
|
406 |
+
begin_loading_status();
|
407 |
+
});
|
408 |
+
}
|
409 |
+
}
|
410 |
+
|
411 |
+
function monitoring_input_box() {
|
412 |
+
register_upload_event();
|
413 |
+
|
414 |
+
elem_upload = document.getElementById('elem_upload')
|
415 |
+
elem_upload_float = document.getElementById('elem_upload_float')
|
416 |
+
elem_input_main = document.getElementById('user_input_main')
|
417 |
+
elem_input_float = document.getElementById('user_input_float')
|
418 |
+
elem_chatbot = document.getElementById('gpt-chatbot')
|
419 |
+
|
420 |
+
if (elem_input_main) {
|
421 |
+
if (elem_input_main.querySelector("textarea")) {
|
422 |
+
add_func_paste(elem_input_main.querySelector("textarea"))
|
423 |
+
}
|
424 |
+
}
|
425 |
+
if (elem_input_float) {
|
426 |
+
if (elem_input_float.querySelector("textarea")) {
|
427 |
+
add_func_paste(elem_input_float.querySelector("textarea"))
|
428 |
+
}
|
429 |
+
}
|
430 |
+
if (elem_chatbot) {
|
431 |
+
add_func_drag(elem_chatbot)
|
432 |
+
}
|
433 |
+
}
|
434 |
+
|
435 |
+
|
436 |
+
// 监视页面变化
|
437 |
+
window.addEventListener("DOMContentLoaded", function () {
|
438 |
+
// const ga = document.getElementsByTagName("gradio-app");
|
439 |
+
gradioApp().addEventListener("render", monitoring_input_box);
|
440 |
+
});
|
441 |
+
|
442 |
+
|
443 |
+
|
444 |
+
|
445 |
+
|
446 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
447 |
+
// 第 5 部分: 音频按钮样式变化
|
448 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
449 |
+
|
450 |
+
function audio_fn_init() {
|
451 |
+
let audio_component = document.getElementById('elem_audio');
|
452 |
+
if (audio_component) {
|
453 |
+
let buttonElement = audio_component.querySelector('button');
|
454 |
+
let specificElement = audio_component.querySelector('.hide.sr-only');
|
455 |
+
specificElement.remove();
|
456 |
+
|
457 |
+
buttonElement.childNodes[1].nodeValue = '启动麦克风';
|
458 |
+
buttonElement.addEventListener('click', function (event) {
|
459 |
+
event.stopPropagation();
|
460 |
+
toast_push('您启动了麦克风!下一步请点击“实时语音对话”启动语音对话。');
|
461 |
+
});
|
462 |
+
|
463 |
+
// 查找语音插件按钮
|
464 |
+
let buttons = document.querySelectorAll('button');
|
465 |
+
let audio_button = null;
|
466 |
+
for (let button of buttons) {
|
467 |
+
if (button.textContent.includes('语音')) {
|
468 |
+
audio_button = button;
|
469 |
+
break;
|
470 |
+
}
|
471 |
+
}
|
472 |
+
if (audio_button) {
|
473 |
+
audio_button.addEventListener('click', function () {
|
474 |
+
toast_push('您点击了“实时语音对话”启动语音对话。');
|
475 |
+
});
|
476 |
+
let parent_element = audio_component.parentElement; // 将buttonElement移动到audio_button的内部
|
477 |
+
audio_button.appendChild(audio_component);
|
478 |
+
buttonElement.style.cssText = 'border-color: #00ffe0;border-width: 2px; height: 25px;'
|
479 |
+
parent_element.remove();
|
480 |
+
audio_component.style.cssText = 'width: 250px;right: 0px;display: inline-flex;flex-flow: row-reverse wrap;place-content: stretch space-between;align-items: center;background-color: #ffffff00;';
|
481 |
+
}
|
482 |
+
|
483 |
+
}
|
484 |
+
}
|
485 |
+
|
486 |
+
|
487 |
+
|
488 |
+
|
489 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
490 |
+
// 第 6 部分: JS初始化函数
|
491 |
+
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
492 |
+
|
493 |
+
function GptAcademicJavaScriptInit(LAYOUT = "LEFT-RIGHT") {
|
494 |
+
audio_fn_init();
|
495 |
+
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
|
496 |
+
var chatbotObserver = new MutationObserver(() => {
|
497 |
+
chatbotContentChanged(1);
|
498 |
+
});
|
499 |
+
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
|
500 |
+
if (LAYOUT === "LEFT-RIGHT") { chatbotAutoHeight(); }
|
501 |
}
|
themes/green.css
CHANGED
@@ -256,13 +256,13 @@ textarea.svelte-1pie7s6 {
|
|
256 |
max-height: 95% !important;
|
257 |
overflow-y: auto !important;
|
258 |
}*/
|
259 |
-
.app.svelte-1mya07g.svelte-1mya07g {
|
260 |
max-width: 100%;
|
261 |
position: relative;
|
262 |
padding: var(--size-4);
|
263 |
width: 100%;
|
264 |
height: 100%;
|
265 |
-
}
|
266 |
|
267 |
.gradio-container-3-32-2 h1 {
|
268 |
font-weight: 700 !important;
|
|
|
256 |
max-height: 95% !important;
|
257 |
overflow-y: auto !important;
|
258 |
}*/
|
259 |
+
/* .app.svelte-1mya07g.svelte-1mya07g {
|
260 |
max-width: 100%;
|
261 |
position: relative;
|
262 |
padding: var(--size-4);
|
263 |
width: 100%;
|
264 |
height: 100%;
|
265 |
+
} */
|
266 |
|
267 |
.gradio-container-3-32-2 h1 {
|
268 |
font-weight: 700 !important;
|
themes/theme.py
CHANGED
@@ -1,6 +1,14 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
from toolbox import get_conf
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def load_dynamic_theme(THEME):
|
6 |
adjust_dynamic_theme = None
|
@@ -20,4 +28,91 @@ def load_dynamic_theme(THEME):
|
|
20 |
theme_declaration = ""
|
21 |
return adjust_theme, advanced_css, theme_declaration, adjust_dynamic_theme
|
22 |
|
23 |
-
adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(THEME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import base64
|
3 |
+
import uuid
|
4 |
from toolbox import get_conf
|
5 |
+
|
6 |
+
"""
|
7 |
+
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
8 |
+
第 1 部分
|
9 |
+
加载主题相关的工具函数
|
10 |
+
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
11 |
+
"""
|
12 |
|
13 |
def load_dynamic_theme(THEME):
|
14 |
adjust_dynamic_theme = None
|
|
|
28 |
theme_declaration = ""
|
29 |
return adjust_theme, advanced_css, theme_declaration, adjust_dynamic_theme
|
30 |
|
31 |
+
adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(get_conf('THEME'))
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
"""
|
39 |
+
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
40 |
+
第 2 部分
|
41 |
+
cookie相关工具函数
|
42 |
+
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
43 |
+
"""
|
44 |
+
|
45 |
+
def init_cookie(cookies, chatbot):
|
46 |
+
# 为每一位访问的用户赋予一个独一无二的uuid编码
|
47 |
+
cookies.update({'uuid': uuid.uuid4()})
|
48 |
+
return cookies
|
49 |
+
|
50 |
+
def to_cookie_str(d):
|
51 |
+
# Pickle the dictionary and encode it as a string
|
52 |
+
pickled_dict = pickle.dumps(d)
|
53 |
+
cookie_value = base64.b64encode(pickled_dict).decode('utf-8')
|
54 |
+
return cookie_value
|
55 |
+
|
56 |
+
def from_cookie_str(c):
|
57 |
+
# Decode the base64-encoded string and unpickle it into a dictionary
|
58 |
+
pickled_dict = base64.b64decode(c.encode('utf-8'))
|
59 |
+
return pickle.loads(pickled_dict)
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
"""
|
66 |
+
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
67 |
+
第 3 部分
|
68 |
+
内嵌的javascript代码
|
69 |
+
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
70 |
+
"""
|
71 |
+
|
72 |
+
js_code_for_css_changing = """(css) => {
|
73 |
+
var existingStyles = document.querySelectorAll("body > gradio-app > div > style")
|
74 |
+
for (var i = 0; i < existingStyles.length; i++) {
|
75 |
+
var style = existingStyles[i];
|
76 |
+
style.parentNode.removeChild(style);
|
77 |
+
}
|
78 |
+
var existingStyles = document.querySelectorAll("style[data-loaded-css]");
|
79 |
+
for (var i = 0; i < existingStyles.length; i++) {
|
80 |
+
var style = existingStyles[i];
|
81 |
+
style.parentNode.removeChild(style);
|
82 |
+
}
|
83 |
+
var styleElement = document.createElement('style');
|
84 |
+
styleElement.setAttribute('data-loaded-css', 'placeholder');
|
85 |
+
styleElement.innerHTML = css;
|
86 |
+
document.body.appendChild(styleElement);
|
87 |
+
}
|
88 |
+
"""
|
89 |
+
|
90 |
+
js_code_for_darkmode_init = """(dark) => {
|
91 |
+
dark = dark == "True";
|
92 |
+
if (document.querySelectorAll('.dark').length) {
|
93 |
+
if (!dark){
|
94 |
+
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
|
95 |
+
}
|
96 |
+
} else {
|
97 |
+
if (dark){
|
98 |
+
document.querySelector('body').classList.add('dark');
|
99 |
+
}
|
100 |
+
}
|
101 |
+
}
|
102 |
+
"""
|
103 |
+
|
104 |
+
js_code_for_toggle_darkmode = """() => {
|
105 |
+
if (document.querySelectorAll('.dark').length) {
|
106 |
+
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
|
107 |
+
} else {
|
108 |
+
document.querySelector('body').classList.add('dark');
|
109 |
+
}
|
110 |
+
}"""
|
111 |
+
|
112 |
+
|
113 |
+
js_code_for_persistent_cookie_init = """(persistent_cookie) => {
|
114 |
+
return getCookie("persistent_cookie");
|
115 |
+
}
|
116 |
+
"""
|
117 |
+
|
118 |
+
|
toolbox.py
CHANGED
@@ -4,6 +4,7 @@ import time
|
|
4 |
import inspect
|
5 |
import re
|
6 |
import os
|
|
|
7 |
import gradio
|
8 |
import shutil
|
9 |
import glob
|
@@ -79,6 +80,7 @@ def ArgsGeneralWrapper(f):
|
|
79 |
'max_length': max_length,
|
80 |
'temperature':temperature,
|
81 |
'client_ip': request.client.host,
|
|
|
82 |
}
|
83 |
plugin_kwargs = {
|
84 |
"advanced_arg": plugin_advanced_arg,
|
@@ -178,12 +180,15 @@ def HotReload(f):
|
|
178 |
最后,使用yield from语句返回重新加载过的函数,并在被装饰的函数上执行。
|
179 |
最终,装饰器函数返回内部函数。这个内部函数可以将函数的原始定义更新为最新版本,并执行函数的新版本。
|
180 |
"""
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
187 |
|
188 |
|
189 |
"""
|
@@ -561,7 +566,8 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
|
|
561 |
user_name = get_user(chatbot)
|
562 |
else:
|
563 |
user_name = default_user_name
|
564 |
-
|
|
|
565 |
user_path = get_log_folder(user_name, plugin_name=None)
|
566 |
if file_already_in_downloadzone(file, user_path):
|
567 |
new_path = file
|
@@ -577,7 +583,8 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
|
|
577 |
if chatbot is not None:
|
578 |
if 'files_to_promote' in chatbot._cookies: current = chatbot._cookies['files_to_promote']
|
579 |
else: current = []
|
580 |
-
|
|
|
581 |
return new_path
|
582 |
|
583 |
|
@@ -602,6 +609,64 @@ def del_outdated_uploads(outdate_time_seconds, target_path_base=None):
|
|
602 |
except: pass
|
603 |
return
|
604 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
605 |
def on_file_uploaded(request: gradio.Request, files, chatbot, txt, txt2, checkboxes, cookies):
|
606 |
"""
|
607 |
当文件被上传时的回调函数
|
@@ -626,16 +691,15 @@ def on_file_uploaded(request: gradio.Request, files, chatbot, txt, txt2, checkbo
|
|
626 |
this_file_path = pj(target_path_base, file_origin_name)
|
627 |
shutil.move(file.name, this_file_path)
|
628 |
upload_msg += extract_archive(file_path=this_file_path, dest_dir=this_file_path+'.extract')
|
629 |
-
|
630 |
-
# 整理文件集合
|
631 |
-
moved_files = [fp for fp in glob.glob(f'{target_path_base}/**/*', recursive=True)]
|
632 |
if "浮动输入区" in checkboxes:
|
633 |
txt, txt2 = "", target_path_base
|
634 |
else:
|
635 |
txt, txt2 = target_path_base, ""
|
636 |
|
637 |
-
# 输出消息
|
638 |
-
|
|
|
639 |
chatbot.append(['我上传了文件,请查收',
|
640 |
f'[Local Message] 收到以下文件: \n\n{moved_files_str}' +
|
641 |
f'\n\n调用路径参数已自动修正到: \n\n{txt}' +
|
@@ -856,7 +920,14 @@ def read_single_conf_with_lru_cache(arg):
|
|
856 |
|
857 |
@lru_cache(maxsize=128)
|
858 |
def get_conf(*args):
|
859 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
860 |
res = []
|
861 |
for arg in args:
|
862 |
r = read_single_conf_with_lru_cache(arg)
|
@@ -937,14 +1008,19 @@ def clip_history(inputs, history, tokenizer, max_token_limit):
|
|
937 |
def get_token_num(txt):
|
938 |
return len(tokenizer.encode(txt, disallowed_special=()))
|
939 |
input_token_num = get_token_num(inputs)
|
|
|
|
|
|
|
|
|
|
|
940 |
if input_token_num < max_token_limit * 3 / 4:
|
941 |
# 当输入部分的token占比小于限制的3/4时,裁剪时
|
942 |
# 1. 把input的余量留出来
|
943 |
max_token_limit = max_token_limit - input_token_num
|
944 |
# 2. 把输出用的余量留出来
|
945 |
-
max_token_limit = max_token_limit -
|
946 |
# 3. 如果余量太小了,直接清除历史
|
947 |
-
if max_token_limit <
|
948 |
history = []
|
949 |
return history
|
950 |
else:
|
@@ -1053,7 +1129,7 @@ def get_user(chatbotwithcookies):
|
|
1053 |
|
1054 |
class ProxyNetworkActivate():
|
1055 |
"""
|
1056 |
-
这段代码定义了一个名为
|
1057 |
"""
|
1058 |
def __init__(self, task=None) -> None:
|
1059 |
self.task = task
|
@@ -1198,6 +1274,35 @@ def get_chat_default_kwargs():
|
|
1198 |
|
1199 |
return default_chat_kwargs
|
1200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1201 |
def get_max_token(llm_kwargs):
|
1202 |
from request_llms.bridge_all import model_info
|
1203 |
return model_info[llm_kwargs['llm_model']]['max_token']
|
|
|
4 |
import inspect
|
5 |
import re
|
6 |
import os
|
7 |
+
import base64
|
8 |
import gradio
|
9 |
import shutil
|
10 |
import glob
|
|
|
80 |
'max_length': max_length,
|
81 |
'temperature':temperature,
|
82 |
'client_ip': request.client.host,
|
83 |
+
'most_recent_uploaded': cookies.get('most_recent_uploaded')
|
84 |
}
|
85 |
plugin_kwargs = {
|
86 |
"advanced_arg": plugin_advanced_arg,
|
|
|
180 |
最后,使用yield from语句返回重新加载过的函数,并在被装饰的函数上执行。
|
181 |
最终,装饰器函数返回内部函数。这个内部函数可以将函数的原始定义更新为最新版本,并执行函数的新版本。
|
182 |
"""
|
183 |
+
if get_conf('PLUGIN_HOT_RELOAD'):
|
184 |
+
@wraps(f)
|
185 |
+
def decorated(*args, **kwargs):
|
186 |
+
fn_name = f.__name__
|
187 |
+
f_hot_reload = getattr(importlib.reload(inspect.getmodule(f)), fn_name)
|
188 |
+
yield from f_hot_reload(*args, **kwargs)
|
189 |
+
return decorated
|
190 |
+
else:
|
191 |
+
return f
|
192 |
|
193 |
|
194 |
"""
|
|
|
566 |
user_name = get_user(chatbot)
|
567 |
else:
|
568 |
user_name = default_user_name
|
569 |
+
if not os.path.exists(file):
|
570 |
+
raise FileNotFoundError(f'文件{file}不存在')
|
571 |
user_path = get_log_folder(user_name, plugin_name=None)
|
572 |
if file_already_in_downloadzone(file, user_path):
|
573 |
new_path = file
|
|
|
583 |
if chatbot is not None:
|
584 |
if 'files_to_promote' in chatbot._cookies: current = chatbot._cookies['files_to_promote']
|
585 |
else: current = []
|
586 |
+
if new_path not in current: # 避免把同一个文件添加多次
|
587 |
+
chatbot._cookies.update({'files_to_promote': [new_path] + current})
|
588 |
return new_path
|
589 |
|
590 |
|
|
|
609 |
except: pass
|
610 |
return
|
611 |
|
612 |
+
|
613 |
+
def html_local_file(file):
|
614 |
+
base_path = os.path.dirname(__file__) # 项目目录
|
615 |
+
if os.path.exists(str(file)):
|
616 |
+
file = f'file={file.replace(base_path, ".")}'
|
617 |
+
return file
|
618 |
+
|
619 |
+
|
620 |
+
def html_local_img(__file, layout='left', max_width=None, max_height=None, md=True):
|
621 |
+
style = ''
|
622 |
+
if max_width is not None:
|
623 |
+
style += f"max-width: {max_width};"
|
624 |
+
if max_height is not None:
|
625 |
+
style += f"max-height: {max_height};"
|
626 |
+
__file = html_local_file(__file)
|
627 |
+
a = f'<div align="{layout}"><img src="{__file}" style="{style}"></div>'
|
628 |
+
if md:
|
629 |
+
a = f'![{__file}]({__file})'
|
630 |
+
return a
|
631 |
+
|
632 |
+
def file_manifest_filter_type(file_list, filter_: list = None):
|
633 |
+
new_list = []
|
634 |
+
if not filter_: filter_ = ['png', 'jpg', 'jpeg']
|
635 |
+
for file in file_list:
|
636 |
+
if str(os.path.basename(file)).split('.')[-1] in filter_:
|
637 |
+
new_list.append(html_local_img(file, md=False))
|
638 |
+
else:
|
639 |
+
new_list.append(file)
|
640 |
+
return new_list
|
641 |
+
|
642 |
+
def to_markdown_tabs(head: list, tabs: list, alignment=':---:', column=False):
|
643 |
+
"""
|
644 |
+
Args:
|
645 |
+
head: 表头:[]
|
646 |
+
tabs: 表值:[[列1], [列2], [列3], [列4]]
|
647 |
+
alignment: :--- 左对齐, :---: 居中对齐, ---: 右对齐
|
648 |
+
column: True to keep data in columns, False to keep data in rows (default).
|
649 |
+
Returns:
|
650 |
+
A string representation of the markdown table.
|
651 |
+
"""
|
652 |
+
if column:
|
653 |
+
transposed_tabs = list(map(list, zip(*tabs)))
|
654 |
+
else:
|
655 |
+
transposed_tabs = tabs
|
656 |
+
# Find the maximum length among the columns
|
657 |
+
max_len = max(len(column) for column in transposed_tabs)
|
658 |
+
|
659 |
+
tab_format = "| %s "
|
660 |
+
tabs_list = "".join([tab_format % i for i in head]) + '|\n'
|
661 |
+
tabs_list += "".join([tab_format % alignment for i in head]) + '|\n'
|
662 |
+
|
663 |
+
for i in range(max_len):
|
664 |
+
row_data = [tab[i] if i < len(tab) else '' for tab in transposed_tabs]
|
665 |
+
row_data = file_manifest_filter_type(row_data, filter_=None)
|
666 |
+
tabs_list += "".join([tab_format % i for i in row_data]) + '|\n'
|
667 |
+
|
668 |
+
return tabs_list
|
669 |
+
|
670 |
def on_file_uploaded(request: gradio.Request, files, chatbot, txt, txt2, checkboxes, cookies):
|
671 |
"""
|
672 |
当文件被上传时的回调函数
|
|
|
691 |
this_file_path = pj(target_path_base, file_origin_name)
|
692 |
shutil.move(file.name, this_file_path)
|
693 |
upload_msg += extract_archive(file_path=this_file_path, dest_dir=this_file_path+'.extract')
|
694 |
+
|
|
|
|
|
695 |
if "浮动输入区" in checkboxes:
|
696 |
txt, txt2 = "", target_path_base
|
697 |
else:
|
698 |
txt, txt2 = target_path_base, ""
|
699 |
|
700 |
+
# 整理文件集合 输出消息
|
701 |
+
moved_files = [fp for fp in glob.glob(f'{target_path_base}/**/*', recursive=True)]
|
702 |
+
moved_files_str = to_markdown_tabs(head=['文件'], tabs=[moved_files])
|
703 |
chatbot.append(['我上传了文件,请查收',
|
704 |
f'[Local Message] 收到以下文件: \n\n{moved_files_str}' +
|
705 |
f'\n\n调用路径参数已自动修正到: \n\n{txt}' +
|
|
|
920 |
|
921 |
@lru_cache(maxsize=128)
|
922 |
def get_conf(*args):
|
923 |
+
"""
|
924 |
+
本项目的所有配置都集中在config.py中。 修改配置有三种方法,您只需要选择其中一种即可:
|
925 |
+
- 直接修改config.py
|
926 |
+
- 创建并修改config_private.py
|
927 |
+
- 修改环境变量(修改docker-compose.yml等价于修改容器内部的环境变量)
|
928 |
+
|
929 |
+
注意:如果您使用docker-compose部署,请修改docker-compose(等价于修改容器内部的环境变量)
|
930 |
+
"""
|
931 |
res = []
|
932 |
for arg in args:
|
933 |
r = read_single_conf_with_lru_cache(arg)
|
|
|
1008 |
def get_token_num(txt):
|
1009 |
return len(tokenizer.encode(txt, disallowed_special=()))
|
1010 |
input_token_num = get_token_num(inputs)
|
1011 |
+
|
1012 |
+
if max_token_limit < 5000: output_token_expect = 256 # 4k & 2k models
|
1013 |
+
elif max_token_limit < 9000: output_token_expect = 512 # 8k models
|
1014 |
+
else: output_token_expect = 1024 # 16k & 32k models
|
1015 |
+
|
1016 |
if input_token_num < max_token_limit * 3 / 4:
|
1017 |
# 当输入部分的token占比小于限制的3/4时,裁剪时
|
1018 |
# 1. 把input的余量留出来
|
1019 |
max_token_limit = max_token_limit - input_token_num
|
1020 |
# 2. 把输出用的余量留出来
|
1021 |
+
max_token_limit = max_token_limit - output_token_expect
|
1022 |
# 3. 如果余量太小了,直接清除历史
|
1023 |
+
if max_token_limit < output_token_expect:
|
1024 |
history = []
|
1025 |
return history
|
1026 |
else:
|
|
|
1129 |
|
1130 |
class ProxyNetworkActivate():
|
1131 |
"""
|
1132 |
+
这段代码定义了一个名为ProxyNetworkActivate的空上下文管理器, 用于给一小段代码上代理
|
1133 |
"""
|
1134 |
def __init__(self, task=None) -> None:
|
1135 |
self.task = task
|
|
|
1274 |
|
1275 |
return default_chat_kwargs
|
1276 |
|
1277 |
+
|
1278 |
+
def get_pictures_list(path):
|
1279 |
+
file_manifest = [f for f in glob.glob(f'{path}/**/*.jpg', recursive=True)]
|
1280 |
+
file_manifest += [f for f in glob.glob(f'{path}/**/*.jpeg', recursive=True)]
|
1281 |
+
file_manifest += [f for f in glob.glob(f'{path}/**/*.png', recursive=True)]
|
1282 |
+
return file_manifest
|
1283 |
+
|
1284 |
+
|
1285 |
+
def have_any_recent_upload_image_files(chatbot):
|
1286 |
+
_5min = 5 * 60
|
1287 |
+
if chatbot is None: return False, None # chatbot is None
|
1288 |
+
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
1289 |
+
if not most_recent_uploaded: return False, None # most_recent_uploaded is None
|
1290 |
+
if time.time() - most_recent_uploaded["time"] < _5min:
|
1291 |
+
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
1292 |
+
path = most_recent_uploaded['path']
|
1293 |
+
file_manifest = get_pictures_list(path)
|
1294 |
+
if len(file_manifest) == 0: return False, None
|
1295 |
+
return True, file_manifest # most_recent_uploaded is new
|
1296 |
+
else:
|
1297 |
+
return False, None # most_recent_uploaded is too old
|
1298 |
+
|
1299 |
+
|
1300 |
+
# Function to encode the image
|
1301 |
+
def encode_image(image_path):
|
1302 |
+
with open(image_path, "rb") as image_file:
|
1303 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
1304 |
+
|
1305 |
+
|
1306 |
def get_max_token(llm_kwargs):
|
1307 |
from request_llms.bridge_all import model_info
|
1308 |
return model_info[llm_kwargs['llm_model']]['max_token']
|
version
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"version": 3.
|
3 |
"show_feature": true,
|
4 |
-
"new_feature": "
|
5 |
}
|
|
|
1 |
{
|
2 |
+
"version": 3.64,
|
3 |
"show_feature": true,
|
4 |
+
"new_feature": "支持直接拖拽文件到上传区 <-> 支持将图片粘贴到输入区 <-> 修复若干隐蔽的内存BUG <-> 修复多用户冲突问题 <-> 接入Deepseek Coder <-> AutoGen多智能体插件测试版"
|
5 |
}
|