Spaces:
Build error
Build error
from toolbox import CatchException, update_ui, report_exception | |
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive | |
import datetime | |
#以下是每类图表的PROMPT | |
SELECT_PROMPT = """ | |
“{subject}” | |
============= | |
以上是从文章中提取的摘要,将会使用这些摘要绘制图表。请你选择一个合适的图表类型: | |
1 流程图 | |
2 序列图 | |
3 类图 | |
4 饼图 | |
5 甘特图 | |
6 状态图 | |
7 实体关系图 | |
8 象限提示图 | |
不需要解释原因,仅需要输出单个不带任何标点符号的数字。 | |
""" | |
#没有思维导图!!!测试发现模型始终会优先选择思维导图 | |
#流程图 | |
PROMPT_1 = """ | |
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例: | |
```mermaid | |
graph TD | |
P(编程) --> L1(Python) | |
P(编程) --> L2(C) | |
P(编程) --> L3(C++) | |
P(编程) --> L4(Javascipt) | |
P(编程) --> L5(PHP) | |
``` | |
""" | |
#序列图 | |
PROMPT_2 = """ | |
请你给出围绕“{subject}”的序列图,使用mermaid语法,mermaid语法举例: | |
```mermaid | |
sequenceDiagram | |
participant A as 用户 | |
participant B as 系统 | |
A->>B: 登录请求 | |
B->>A: 登录成功 | |
A->>B: 获取数据 | |
B->>A: 返回数据 | |
``` | |
""" | |
#类图 | |
PROMPT_3 = """ | |
请你给出围绕“{subject}”的类图,使用mermaid语法,mermaid语法举例: | |
```mermaid | |
classDiagram | |
Class01 <|-- AveryLongClass : Cool | |
Class03 *-- Class04 | |
Class05 o-- Class06 | |
Class07 .. Class08 | |
Class09 --> C2 : Where am i? | |
Class09 --* C3 | |
Class09 --|> Class07 | |
Class07 : equals() | |
Class07 : Object[] elementData | |
Class01 : size() | |
Class01 : int chimp | |
Class01 : int gorilla | |
Class08 <--> C2: Cool label | |
``` | |
""" | |
#饼图 | |
PROMPT_4 = """ | |
请你给出围绕“{subject}”的饼图,使用mermaid语法,mermaid语法举例: | |
```mermaid | |
pie title Pets adopted by volunteers | |
"狗" : 386 | |
"猫" : 85 | |
"兔子" : 15 | |
``` | |
""" | |
#甘特图 | |
PROMPT_5 = """ | |
请你给出围绕“{subject}”的甘特图,使用mermaid语法,mermaid语法举例: | |
```mermaid | |
gantt | |
title 项目开发流程 | |
dateFormat YYYY-MM-DD | |
section 设计 | |
需求分析 :done, des1, 2024-01-06,2024-01-08 | |
原型设计 :active, des2, 2024-01-09, 3d | |
UI设计 : des3, after des2, 5d | |
section 开发 | |
前端开发 :2024-01-20, 10d | |
后端开发 :2024-01-20, 10d | |
``` | |
""" | |
#状态图 | |
PROMPT_6 = """ | |
请你给出围绕“{subject}”的状态图,使用mermaid语法,mermaid语法举例: | |
```mermaid | |
stateDiagram-v2 | |
[*] --> Still | |
Still --> [*] | |
Still --> Moving | |
Moving --> Still | |
Moving --> Crash | |
Crash --> [*] | |
``` | |
""" | |
#实体关系图 | |
PROMPT_7 = """ | |
请你给出围绕“{subject}”的实体关系图,使用mermaid语法,mermaid语法举例: | |
```mermaid | |
erDiagram | |
CUSTOMER ||--o{ ORDER : places | |
ORDER ||--|{ LINE-ITEM : contains | |
CUSTOMER { | |
string name | |
string id | |
} | |
ORDER { | |
string orderNumber | |
date orderDate | |
string customerID | |
} | |
LINE-ITEM { | |
number quantity | |
string productID | |
} | |
``` | |
""" | |
#象限提示图 | |
PROMPT_8 = """ | |
请你给出围绕“{subject}”的象限图,使用mermaid语法,mermaid语法举例: | |
```mermaid | |
graph LR | |
A[Hard skill] --> B(Programming) | |
A[Hard skill] --> C(Design) | |
D[Soft skill] --> E(Coordination) | |
D[Soft skill] --> F(Communication) | |
``` | |
""" | |
#思维导图 | |
PROMPT_9 = """ | |
{subject} | |
========== | |
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,mermaid语法举例: | |
```mermaid | |
mindmap | |
root((mindmap)) | |
Origins | |
Long history | |
::icon(fa fa-book) | |
Popularisation | |
British popular psychology author Tony Buzan | |
Research | |
On effectiveness<br/>and features | |
On Automatic creation | |
Uses | |
Creative techniques | |
Strategic planning | |
Argument mapping | |
Tools | |
Pen and paper | |
Mermaid | |
``` | |
""" | |
def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs): | |
############################## <第 0 步,切割输入> ################################## | |
# 借用PDF切割中的函数对文本进行切割 | |
TOKEN_LIMIT_PER_FRAGMENT = 2500 | |
txt = str(history).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars | |
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit | |
txt = breakdown_text_to_satisfy_token_limit(txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model']) | |
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ################################## | |
results = [] | |
MAX_WORD_TOTAL = 4096 | |
n_txt = len(txt) | |
last_iteration_result = "从以下文本中提取摘要。" | |
if n_txt >= 20: print('文章极长,不能达到预期效果') | |
for i in range(n_txt): | |
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt | |
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}" | |
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...." | |
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问 | |
llm_kwargs, chatbot, | |
history=["The main content of the previous section is?", last_iteration_result], # 迭代上一次的结果 | |
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese." # 提示 | |
) | |
results.append(gpt_say) | |
last_iteration_result = gpt_say | |
############################## <第 2 步,根据整理的摘要选择图表类型> ################################## | |
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") | |
gpt_say = plugin_kwargs.get("advanced_arg", "") #将图表类型参数赋值为插件参数 | |
results_txt = '\n'.join(results) #合并摘要 | |
if gpt_say not in ['1','2','3','4','5','6','7','8','9']: #如插件参数不正确则使用对话模型判断 | |
i_say_show_user = f'接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制'; gpt_say = "[Local Message] 收到。" # 用户提示 | |
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI | |
i_say = SELECT_PROMPT.format(subject=results_txt) | |
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。' | |
for i in range(3): | |
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( | |
inputs=i_say, | |
inputs_show_user=i_say_show_user, | |
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[], | |
sys_prompt="" | |
) | |
if gpt_say in ['1','2','3','4','5','6','7','8','9']: #判断返回是否正确 | |
break | |
if gpt_say not in ['1','2','3','4','5','6','7','8','9']: | |
gpt_say = '1' | |
############################## <第 3 步,根据选择的图表类型绘制图表> ################################## | |
if gpt_say == '1': | |
i_say = PROMPT_1.format(subject=results_txt) | |
elif gpt_say == '2': | |
i_say = PROMPT_2.format(subject=results_txt) | |
elif gpt_say == '3': | |
i_say = PROMPT_3.format(subject=results_txt) | |
elif gpt_say == '4': | |
i_say = PROMPT_4.format(subject=results_txt) | |
elif gpt_say == '5': | |
i_say = PROMPT_5.format(subject=results_txt) | |
elif gpt_say == '6': | |
i_say = PROMPT_6.format(subject=results_txt) | |
elif gpt_say == '7': | |
i_say = PROMPT_7.replace("{subject}", results_txt) #由于实体关系图用到了{}符号 | |
elif gpt_say == '8': | |
i_say = PROMPT_8.format(subject=results_txt) | |
elif gpt_say == '9': | |
i_say = PROMPT_9.format(subject=results_txt) | |
i_say_show_user = f'请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。' | |
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( | |
inputs=i_say, | |
inputs_show_user=i_say_show_user, | |
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[], | |
sys_prompt="" | |
) | |
history.append(gpt_say) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新 | |
def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): | |
""" | |
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径 | |
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行 | |
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数 | |
chatbot 聊天显示框的句柄,用于显示给用户 | |
history 聊天历史,前情提要 | |
system_prompt 给gpt的静默提醒 | |
web_port 当前软件运行的端口号 | |
""" | |
import os | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\ | |
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918"]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
if os.path.exists(txt): #如输入区无内容则直接解析历史记录 | |
from crazy_functions.pdf_fns.parse_word import extract_text_from_files | |
file_exist, final_result, page_one, file_manifest, excption = extract_text_from_files(txt, chatbot, history) | |
else: | |
file_exist = False | |
excption = "" | |
file_manifest = [] | |
if excption != "": | |
if excption == "word": | |
report_exception(chatbot, history, | |
a = f"解析项目: {txt}", | |
b = f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。") | |
elif excption == "pdf": | |
report_exception(chatbot, history, | |
a = f"解析项目: {txt}", | |
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。") | |
elif excption == "word_pip": | |
report_exception(chatbot, history, | |
a=f"解析项目: {txt}", | |
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
else: | |
if not file_exist: | |
history.append(txt) #如输入区不是文件则将输入区内容加入历史记录 | |
i_say_show_user = f'首先你从历史记录中提取摘要。'; gpt_say = "[Local Message] 收到。" # 用户提示 | |
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI | |
yield from 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs) | |
else: | |
file_num = len(file_manifest) | |
for i in range(file_num): #依次处理文件 | |
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"; gpt_say = "[Local Message] 收到。" # 用户提示 | |
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI | |
history = [] #如输入区内容为文件则清空历史记录 | |
history.append(final_result[i]) | |
yield from 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs) |