Spaces:
Build error
Build error
""" | |
该文件中主要包含三个函数 | |
不具备多线程能力的函数: | |
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 | |
具备多线程调用能力的函数 | |
2. predict_no_ui_long_connection:支持多线程 | |
""" | |
import json | |
import time | |
import logging | |
import requests | |
import base64 | |
import os | |
import glob | |
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, update_ui_lastest_msg, get_max_token | |
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \ | |
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY') | |
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ | |
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' | |
def have_any_recent_upload_image_files(chatbot): | |
_5min = 5 * 60 | |
if chatbot is None: return False, None # chatbot is None | |
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None) | |
if not most_recent_uploaded: return False, None # most_recent_uploaded is None | |
if time.time() - most_recent_uploaded["time"] < _5min: | |
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None) | |
path = most_recent_uploaded['path'] | |
file_manifest = [f for f in glob.glob(f'{path}/**/*.jpg', recursive=True)] | |
file_manifest += [f for f in glob.glob(f'{path}/**/*.jpeg', recursive=True)] | |
file_manifest += [f for f in glob.glob(f'{path}/**/*.png', recursive=True)] | |
if len(file_manifest) == 0: return False, None | |
return True, file_manifest # most_recent_uploaded is new | |
else: | |
return False, None # most_recent_uploaded is too old | |
def report_invalid_key(key): | |
if get_conf("BLOCK_INVALID_APIKEY"): | |
# 实验性功能,自动检测并屏蔽失效的KEY,请勿使用 | |
from request_llms.key_manager import ApiKeyManager | |
api_key = ApiKeyManager().add_key_to_blacklist(key) | |
def get_full_error(chunk, stream_response): | |
""" | |
获取完整的从Openai返回的报错 | |
""" | |
while True: | |
try: | |
chunk += next(stream_response) | |
except: | |
break | |
return chunk | |
def decode_chunk(chunk): | |
# 提前读取一些信息 (用于判断异常) | |
chunk_decoded = chunk.decode() | |
chunkjson = None | |
has_choices = False | |
choice_valid = False | |
has_content = False | |
has_role = False | |
try: | |
chunkjson = json.loads(chunk_decoded[6:]) | |
has_choices = 'choices' in chunkjson | |
if has_choices: choice_valid = (len(chunkjson['choices']) > 0) | |
if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"] | |
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"] | |
except: | |
pass | |
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role | |
from functools import lru_cache | |
def verify_endpoint(endpoint): | |
""" | |
检查endpoint是否可用 | |
""" | |
return endpoint | |
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): | |
raise NotImplementedError | |
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): | |
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot) | |
if is_any_api_key(inputs): | |
chatbot._cookies['api_key'] = inputs | |
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs))) | |
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面 | |
return | |
elif not is_any_api_key(chatbot._cookies['api_key']): | |
chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")) | |
yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面 | |
return | |
if not have_recent_file: | |
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写")) | |
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面 | |
return | |
if os.path.exists(inputs): | |
chatbot.append((inputs, "已经接收到您上传的文件,您不需要再重复强调该文件的路径了,请直接输入您的问题。")) | |
yield from update_ui(chatbot=chatbot, history=history, msg="等待指令") # 刷新界面 | |
return | |
user_input = inputs | |
if additional_fn is not None: | |
from core_functional import handle_core_functionality | |
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) | |
raw_input = inputs | |
logging.info(f'[raw_input] {raw_input}') | |
def make_media_input(inputs, image_paths): | |
for image_path in image_paths: | |
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>' | |
return inputs | |
chatbot.append((make_media_input(inputs, image_paths), "")) | |
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 | |
# check mis-behavior | |
if is_the_upload_folder(user_input): | |
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。") | |
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面 | |
time.sleep(2) | |
try: | |
headers, payload, api_key = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths) | |
except RuntimeError as e: | |
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。") | |
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面 | |
return | |
# 检查endpoint是否合法 | |
try: | |
from .bridge_all import model_info | |
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint']) | |
except: | |
tb_str = '```\n' + trimmed_format_exc() + '```' | |
chatbot[-1] = (inputs, tb_str) | |
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面 | |
return | |
history.append(make_media_input(inputs, image_paths)) | |
history.append("") | |
retry = 0 | |
while True: | |
try: | |
# make a POST request to the API endpoint, stream=True | |
response = requests.post(endpoint, headers=headers, proxies=proxies, | |
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break | |
except: | |
retry += 1 | |
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) | |
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" | |
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面 | |
if retry > MAX_RETRY: raise TimeoutError | |
gpt_replying_buffer = "" | |
is_head_of_the_stream = True | |
if stream: | |
stream_response = response.iter_lines() | |
while True: | |
try: | |
chunk = next(stream_response) | |
except StopIteration: | |
# 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里 | |
chunk_decoded = chunk.decode() | |
error_msg = chunk_decoded | |
# 首先排除一个one-api没有done数据包的第三方Bug情形 | |
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0: | |
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。") | |
break | |
# 其他情况,直接返回报错 | |
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key) | |
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面 | |
return | |
# 提前读取一些信息 (用于判断异常) | |
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk) | |
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded): | |
# 数据流的第一帧不携带content | |
is_head_of_the_stream = False; continue | |
if chunk: | |
try: | |
if has_choices and not choice_valid: | |
# 一些垃圾第三方接口的出现这样的错误 | |
continue | |
# 前者是API2D的结束条件,后者是OPENAI的结束条件 | |
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0): | |
# 判定为数据流的结束,gpt_replying_buffer也写完了 | |
lastmsg = chatbot[-1][-1] + f"\n\n\n\n「{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」" | |
yield from update_ui_lastest_msg(lastmsg, chatbot, history, delay=1) | |
logging.info(f'[response] {gpt_replying_buffer}') | |
break | |
# 处理数据流的主体 | |
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}" | |
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出 | |
if has_content: | |
# 正常情况 | |
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"] | |
elif has_role: | |
# 一些第三方接口的出现这样的错误,兼容一下吧 | |
continue | |
else: | |
# 一些垃圾第三方接口的出现这样的错误 | |
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"] | |
history[-1] = gpt_replying_buffer | |
chatbot[-1] = (history[-2], history[-1]) | |
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面 | |
except Exception as e: | |
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面 | |
chunk = get_full_error(chunk, stream_response) | |
chunk_decoded = chunk.decode() | |
error_msg = chunk_decoded | |
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key) | |
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面 | |
print(error_msg) | |
return | |
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key=""): | |
from .bridge_all import model_info | |
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup' | |
if "reduce the length" in error_msg: | |
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出 | |
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'], | |
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一 | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)") | |
elif "does not exist" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.") | |
elif "Incorrect API key" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website); report_invalid_key(api_key) | |
elif "exceeded your current quota" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website); report_invalid_key(api_key) | |
elif "account is not active" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key) | |
elif "associated with a deactivated account" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key) | |
elif "API key has been deactivated" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key) | |
elif "bad forward key" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.") | |
elif "Not enough point" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.") | |
else: | |
from toolbox import regular_txt_to_markdown | |
tb_str = '```\n' + trimmed_format_exc() + '```' | |
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}") | |
return chatbot, history | |
# Function to encode the image | |
def encode_image(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths): | |
""" | |
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 | |
""" | |
if not is_any_api_key(llm_kwargs['api_key']): | |
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。") | |
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model']) | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {api_key}" | |
} | |
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG}) | |
if llm_kwargs['llm_model'].startswith('azure-'): | |
headers.update({"api-key": api_key}) | |
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys(): | |
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"] | |
headers.update({"api-key": azure_api_key_unshared}) | |
base64_images = [] | |
for image_path in image_paths: | |
base64_images.append(encode_image(image_path)) | |
messages = [] | |
what_i_ask_now = {} | |
what_i_ask_now["role"] = "user" | |
what_i_ask_now["content"] = [] | |
what_i_ask_now["content"].append({ | |
"type": "text", | |
"text": inputs | |
}) | |
for image_path, base64_image in zip(image_paths, base64_images): | |
what_i_ask_now["content"].append({ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{base64_image}" | |
} | |
}) | |
messages.append(what_i_ask_now) | |
model = llm_kwargs['llm_model'] | |
if llm_kwargs['llm_model'].startswith('api2d-'): | |
model = llm_kwargs['llm_model'][len('api2d-'):] | |
payload = { | |
"model": model, | |
"messages": messages, | |
"temperature": llm_kwargs['temperature'], # 1.0, | |
"top_p": llm_kwargs['top_p'], # 1.0, | |
"n": 1, | |
"stream": True, | |
"max_tokens": get_max_token(llm_kwargs), | |
"presence_penalty": 0, | |
"frequency_penalty": 0, | |
} | |
try: | |
print(f" {llm_kwargs['llm_model']} : {inputs[:100]} ..........") | |
except: | |
print('输入中可能存在乱码。') | |
return headers, payload, api_key | |