Spaces:
Build error
Build error
import markdown, mdtex2html, threading, importlib, traceback, importlib, inspect, re | |
from show_math import convert as convert_math | |
from functools import wraps, lru_cache | |
def ArgsGeneralWrapper(f): | |
""" | |
装饰器函数,用于重组输入参数,改变输入参数的顺序与结构。 | |
""" | |
def decorated(txt, txt2, *args, **kwargs): | |
txt_passon = txt | |
if txt == "" and txt2 != "": txt_passon = txt2 | |
yield from f(txt_passon, *args, **kwargs) | |
return decorated | |
def get_reduce_token_percent(text): | |
try: | |
# text = "maximum context length is 4097 tokens. However, your messages resulted in 4870 tokens" | |
pattern = r"(\d+)\s+tokens\b" | |
match = re.findall(pattern, text) | |
EXCEED_ALLO = 500 # 稍微留一点余地,否则在回复时会因余量太少出问题 | |
max_limit = float(match[0]) - EXCEED_ALLO | |
current_tokens = float(match[1]) | |
ratio = max_limit/current_tokens | |
assert ratio > 0 and ratio < 1 | |
return ratio, str(int(current_tokens-max_limit)) | |
except: | |
return 0.5, '不详' | |
def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[], sys_prompt='', long_connection=True): | |
""" | |
调用简单的predict_no_ui接口,但是依然保留了些许界面心跳功能,当对话太长时,会自动采用二分法截断 | |
i_say: 当前输入 | |
i_say_show_user: 显示到对话界面上的当前输入,例如,输入整个文件时,你绝对不想把文件的内容都糊到对话界面上 | |
chatbot: 对话界面句柄 | |
top_p, temperature: gpt参数 | |
history: gpt参数 对话历史 | |
sys_prompt: gpt参数 sys_prompt | |
long_connection: 是否采用更稳定的连接方式(推荐) | |
""" | |
import time | |
from request_llm.bridge_chatgpt import predict_no_ui, predict_no_ui_long_connection | |
from toolbox import get_conf | |
TIMEOUT_SECONDS, MAX_RETRY = get_conf('TIMEOUT_SECONDS', 'MAX_RETRY') | |
# 多线程的时候,需要一个mutable结构在不同线程之间传递信息 | |
# list就是最简单的mutable结构,我们第一个位置放gpt输出,第二个位置传递报错信息 | |
mutable = [None, ''] | |
# multi-threading worker | |
def mt(i_say, history): | |
while True: | |
try: | |
if long_connection: | |
mutable[0] = predict_no_ui_long_connection(inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt) | |
else: | |
mutable[0] = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt) | |
break | |
except ConnectionAbortedError as token_exceeded_error: | |
# 尝试计算比例,尽可能多地保留文本 | |
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error)) | |
if len(history) > 0: | |
history = [his[ int(len(his) *p_ratio): ] for his in history if his is not None] | |
else: | |
i_say = i_say[: int(len(i_say) *p_ratio) ] | |
mutable[1] = f'警告,文本过长将进行截断,Token溢出数:{n_exceed},截断比例:{(1-p_ratio):.0%}。' | |
except TimeoutError as e: | |
mutable[0] = '[Local Message] 请求超时。' | |
raise TimeoutError | |
except Exception as e: | |
mutable[0] = f'[Local Message] 异常:{str(e)}.' | |
raise RuntimeError(f'[Local Message] 异常:{str(e)}.') | |
# 创建新线程发出http请求 | |
thread_name = threading.Thread(target=mt, args=(i_say, history)); thread_name.start() | |
# 原来的线程则负责持续更新UI,实现一个超时倒计时,并等待新线程的任务完成 | |
cnt = 0 | |
while thread_name.is_alive(): | |
cnt += 1 | |
chatbot[-1] = (i_say_show_user, f"[Local Message] {mutable[1]}waiting gpt response {cnt}/{TIMEOUT_SECONDS*2*(MAX_RETRY+1)}"+''.join(['.']*(cnt%4))) | |
yield chatbot, history, '正常' | |
time.sleep(1) | |
# 把gpt的输出从mutable中取出来 | |
gpt_say = mutable[0] | |
if gpt_say=='[Local Message] Failed with timeout.': raise TimeoutError | |
return gpt_say | |
def write_results_to_file(history, file_name=None): | |
""" | |
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。 | |
""" | |
import os, time | |
if file_name is None: | |
# file_name = time.strftime("chatGPT分析报告%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md' | |
file_name = 'chatGPT分析报告' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md' | |
os.makedirs('./gpt_log/', exist_ok=True) | |
with open(f'./gpt_log/{file_name}', 'w', encoding = 'utf8') as f: | |
f.write('# chatGPT 分析报告\n') | |
for i, content in enumerate(history): | |
try: # 这个bug没找到触发条件,暂时先这样顶一下 | |
if type(content) != str: content = str(content) | |
except: | |
continue | |
if i%2==0: f.write('## ') | |
f.write(content) | |
f.write('\n\n') | |
res = '以上材料已经被写入' + os.path.abspath(f'./gpt_log/{file_name}') | |
print(res) | |
return res | |
def regular_txt_to_markdown(text): | |
""" | |
将普通文本转换为Markdown格式的文本。 | |
""" | |
text = text.replace('\n', '\n\n') | |
text = text.replace('\n\n\n', '\n\n') | |
text = text.replace('\n\n\n', '\n\n') | |
return text | |
def CatchException(f): | |
""" | |
装饰器函数,捕捉函数f中的异常并封装到一个生成器中返回,并显示到聊天当中。 | |
""" | |
def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT): | |
try: | |
yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT) | |
except Exception as e: | |
from check_proxy import check_proxy | |
from toolbox import get_conf | |
proxies, = get_conf('proxies') | |
tb_str = '```\n' + traceback.format_exc() + '```' | |
if chatbot is None or len(chatbot) == 0: chatbot = [["插件调度异常","异常原因"]] | |
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 实验性函数调用出错: \n\n{tb_str} \n\n当前代理可用性: \n\n{check_proxy(proxies)}") | |
yield chatbot, history, f'异常 {e}' | |
return decorated | |
def HotReload(f): | |
""" | |
装饰器函数,实现函数插件热更新 | |
""" | |
def decorated(*args, **kwargs): | |
fn_name = f.__name__ | |
f_hot_reload = getattr(importlib.reload(inspect.getmodule(f)), fn_name) | |
yield from f_hot_reload(*args, **kwargs) | |
return decorated | |
def report_execption(chatbot, history, a, b): | |
""" | |
向chatbot中添加错误信息 | |
""" | |
chatbot.append((a, b)) | |
history.append(a); history.append(b) | |
def text_divide_paragraph(text): | |
""" | |
将文本按照段落分隔符分割开,生成带有段落标签的HTML代码。 | |
""" | |
if '```' in text: | |
# careful input | |
return text | |
else: | |
# wtf input | |
lines = text.split("\n") | |
for i, line in enumerate(lines): | |
lines[i] = lines[i].replace(" ", " ") | |
text = "</br>".join(lines) | |
return text | |
def markdown_convertion(txt): | |
""" | |
将Markdown格式的文本转换为HTML格式。如果包含数学公式,则先将公式转换为HTML格式。 | |
""" | |
pre = '<div class="markdown-body">' | |
suf = '</div>' | |
if ('$' in txt) and ('```' not in txt): | |
return pre + markdown.markdown(txt,extensions=['fenced_code','tables']) + '<br><br>' + markdown.markdown(convert_math(txt, splitParagraphs=False),extensions=['fenced_code','tables']) + suf | |
else: | |
return pre + markdown.markdown(txt,extensions=['fenced_code','tables']) + suf | |
def close_up_code_segment_during_stream(gpt_reply): | |
""" | |
在gpt输出代码的中途(输出了前面的```,但还没输出完后面的```),补上后面的``` | |
""" | |
if '```' not in gpt_reply: return gpt_reply | |
if gpt_reply.endswith('```'): return gpt_reply | |
# 排除了以上两个情况,我们 | |
segments = gpt_reply.split('```') | |
n_mark = len(segments) - 1 | |
if n_mark % 2 == 1: | |
# print('输出代码片段中!') | |
return gpt_reply+'\n```' | |
else: | |
return gpt_reply | |
def format_io(self, y): | |
""" | |
将输入和输出解析为HTML格式。将y中最后一项的输入部分段落化,并将输出部分的Markdown和数学公式转换为HTML格式。 | |
""" | |
if y is None or y == []: return [] | |
i_ask, gpt_reply = y[-1] | |
i_ask = text_divide_paragraph(i_ask) # 输入部分太自由,预处理一波 | |
gpt_reply = close_up_code_segment_during_stream(gpt_reply) # 当代码输出半截的时候,试着补上后个``` | |
y[-1] = ( | |
None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code','tables']), | |
None if gpt_reply is None else markdown_convertion(gpt_reply) | |
) | |
return y | |
def find_free_port(): | |
""" | |
返回当前系统中可用的未使用端口。 | |
""" | |
import socket | |
from contextlib import closing | |
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: | |
s.bind(('', 0)) | |
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) | |
return s.getsockname()[1] | |
def extract_archive(file_path, dest_dir): | |
import zipfile | |
import tarfile | |
import os | |
# Get the file extension of the input file | |
file_extension = os.path.splitext(file_path)[1] | |
# Extract the archive based on its extension | |
if file_extension == '.zip': | |
with zipfile.ZipFile(file_path, 'r') as zipobj: | |
zipobj.extractall(path=dest_dir) | |
print("Successfully extracted zip archive to {}".format(dest_dir)) | |
elif file_extension in ['.tar', '.gz', '.bz2']: | |
with tarfile.open(file_path, 'r:*') as tarobj: | |
tarobj.extractall(path=dest_dir) | |
print("Successfully extracted tar archive to {}".format(dest_dir)) | |
# 第三方库,需要预先pip install rarfile | |
# 此外,Windows上还需要安装winrar软件,配置其Path环境变量,如"C:\Program Files\WinRAR"才可以 | |
elif file_extension == '.rar': | |
try: | |
import rarfile | |
with rarfile.RarFile(file_path) as rf: | |
rf.extractall(path=dest_dir) | |
print("Successfully extracted rar archive to {}".format(dest_dir)) | |
except: | |
print("Rar format requires additional dependencies to install") | |
return '\n\n需要安装pip install rarfile来解压rar文件' | |
# 第三方库,需要预先pip install py7zr | |
elif file_extension == '.7z': | |
try: | |
import py7zr | |
with py7zr.SevenZipFile(file_path, mode='r') as f: | |
f.extractall(path=dest_dir) | |
print("Successfully extracted 7z archive to {}".format(dest_dir)) | |
except: | |
print("7z format requires additional dependencies to install") | |
return '\n\n需要安装pip install py7zr来解压7z文件' | |
else: | |
return '' | |
return '' | |
def find_recent_files(directory): | |
""" | |
me: find files that is created with in one minutes under a directory with python, write a function | |
gpt: here it is! | |
""" | |
import os | |
import time | |
current_time = time.time() | |
one_minute_ago = current_time - 60 | |
recent_files = [] | |
for filename in os.listdir(directory): | |
file_path = os.path.join(directory, filename) | |
if file_path.endswith('.log'): continue | |
created_time = os.path.getctime(file_path) | |
if created_time >= one_minute_ago: | |
if os.path.isdir(file_path): continue | |
recent_files.append(file_path) | |
return recent_files | |
def on_file_uploaded(files, chatbot, txt): | |
if len(files) == 0: return chatbot, txt | |
import shutil, os, time, glob | |
from toolbox import extract_archive | |
try: shutil.rmtree('./private_upload/') | |
except: pass | |
time_tag = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) | |
os.makedirs(f'private_upload/{time_tag}', exist_ok=True) | |
err_msg = '' | |
for file in files: | |
file_origin_name = os.path.basename(file.orig_name) | |
shutil.copy(file.name, f'private_upload/{time_tag}/{file_origin_name}') | |
err_msg += extract_archive(f'private_upload/{time_tag}/{file_origin_name}', | |
dest_dir=f'private_upload/{time_tag}/{file_origin_name}.extract') | |
moved_files = [fp for fp in glob.glob('private_upload/**/*', recursive=True)] | |
txt = f'private_upload/{time_tag}' | |
moved_files_str = '\t\n\n'.join(moved_files) | |
chatbot.append(['我上传了文件,请查收', | |
f'[Local Message] 收到以下文件: \n\n{moved_files_str}'+ | |
f'\n\n调用路径参数已自动修正到: \n\n{txt}'+ | |
f'\n\n现在您点击任意实验功能时,以上文件将被作为输入参数'+err_msg]) | |
return chatbot, txt | |
def on_report_generated(files, chatbot): | |
from toolbox import find_recent_files | |
report_files = find_recent_files('gpt_log') | |
if len(report_files) == 0: return None, chatbot | |
# files.extend(report_files) | |
chatbot.append(['汇总报告如何远程获取?', '汇总报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。']) | |
return report_files, chatbot | |
def read_single_conf_with_lru_cache(arg): | |
try: r = getattr(importlib.import_module('config_private'), arg) | |
except: r = getattr(importlib.import_module('config'), arg) | |
# 在读取API_KEY时,检查一下是不是忘了改config | |
if arg=='API_KEY': | |
# 正确的 API_KEY 是 "sk-" + 48 位大小写字母数字的组合 | |
API_MATCH = re.match(r"sk-[a-zA-Z0-9]{48}$", r) | |
if API_MATCH: | |
print(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功") | |
else: | |
assert False, "正确的 API_KEY 是 'sk-' + '48 位大小写字母数字' 的组合,请在config文件中修改API密钥, 添加海外代理之后再运行。" + \ | |
"(如果您刚更新过代码,请确保旧版config_private文件中没有遗留任何新增键值)" | |
if arg=='proxies': | |
if r is None: | |
print('[PROXY] 网络代理状态:未配置。无代理状态下很可能无法访问。建议:检查USE_PROXY选项是否修改。') | |
else: | |
print('[PROXY] 网络代理状态:已配置。配置信息如下:', r) | |
assert isinstance(r, dict), 'proxies格式错误,请注意proxies选项的格式,不要遗漏括号。' | |
return r | |
def get_conf(*args): | |
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到 | |
res = [] | |
for arg in args: | |
r = read_single_conf_with_lru_cache(arg) | |
res.append(r) | |
return res | |
def clear_line_break(txt): | |
txt = txt.replace('\n', ' ') | |
txt = txt.replace(' ', ' ') | |
txt = txt.replace(' ', ' ') | |
return txt | |
class DummyWith(): | |
def __enter__(self): | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
return |