IDX-Chronos / utils.py
omniverse1's picture
Update utils.py
9bcc597 verified
import yfinance as yf
import pandas as pd
import numpy as np
import torch
from datetime import datetime, timedelta
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import spaces
import gc
import time
import random
from chronos import ChronosPipeline
from scipy.stats import skew, kurtosis
from typing import Dict, Union, List
# Global variable for model pipeline
pipeline = None
# --- ADVANCED UTILITIES & CONFIG ---
# Sumber data Covariate eksternal
COVARIATE_SOURCES = {
'market_indices': ['^GSPC', '^DJI', '^IXIC', '^VIX'],
'commodities': ['GC=F', 'CL=F'],
}
def clear_gpu_memory():
"""Membersihkan cache memori GPU"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@spaces.GPU()
def load_pipeline():
"""
Memuat model Chronos-2 dengan konfigurasi GPU canggih.
Menggunakan device_map="cuda" dan torch_dtype=torch.float16.
"""
global pipeline
try:
model_name = "amazon/chronos-2"
if pipeline is None:
clear_gpu_memory()
print(f"Loading Chronos model: {model_name}...")
# FIX 1: Menyederhanakan argumen untuk menghindari error 'input_patch_size'
pipeline = ChronosPipeline.from_pretrained(
model_name,
device_map="cuda",
torch_dtype=torch.float16,
# Menghapus argumen yang mungkin memicu error konfigurasi
)
pipeline.model = pipeline.model.eval()
for param in pipeline.model.parameters():
param.requires_grad = False
print(f"Chronos model {model_name} loaded successfully on CUDA")
return pipeline
except Exception as e:
# Menampilkan error yang lebih spesifik
print(f"Error loading pipeline on CUDA, trying CPU: {str(e)}")
try:
# Fallback ke CPU
pipeline = ChronosPipeline.from_pretrained(model_name, device_map="cpu")
pipeline.model = pipeline.model.eval()
print(f"Chronos model {model_name} loaded successfully on CPU (performance degraded)")
return pipeline
except Exception as cpu_e:
raise RuntimeError(f"Failed to load model {model_name} on both CUDA and CPU: {str(cpu_e)}")
# ... (Fungsi-fungsi lain: retry_yfinance_request, fetch_enhanced_covariates, calculate_advanced_risk_metrics)
def retry_yfinance_request(func, max_retries=3, initial_delay=1):
"""Mekanisme retry untuk permintaan yfinance dengan backoff eksponensial."""
for attempt in range(max_retries):
try:
result = func()
if result is not None and not result.empty:
return result
if attempt == max_retries - 1:
return None
delay = min(8.0, initial_delay * (2 ** attempt) + random.uniform(0, 1))
time.sleep(delay)
except Exception:
if attempt == max_retries - 1:
return None
delay = min(8.0, initial_delay * (2 ** attempt) + random.uniform(0, 1))
time.sleep(delay)
def fetch_enhanced_covariates(data: pd.DataFrame) -> pd.DataFrame:
"""Mengambil data covariate (Indeks Pasar) dan menggabungkannya."""
start_date = data.index.min().strftime('%Y-%m-%d')
end_date = data.index.max().strftime('%Y-%m-%d')
date_range = pd.date_range(start=start_date, end=end_date, freq='D')
# 1. Reindex data asli ke range hari yang kontinu
data_full = data.reindex(date_range)
data_full['Close'] = data_full['Close'].fillna(method='ffill')
data_full['Volume'] = data_full['Volume'].fillna(0)
covariate_df = pd.DataFrame(index=date_range)
# 2. Ambil data dari semua sumber covariate eksternal
for source_key, symbols in COVARIATE_SOURCES.items():
for symbol in symbols:
def fetch_covariate():
return yf.download(symbol, start=start_date, end=end_date, interval="1d", progress=False)
cov_data = retry_yfinance_request(fetch_covariate)
if cov_data is not None and not cov_data.empty:
cov_data = cov_data['Close'].rename(f'cov_{symbol.replace("^", "_").replace("=", "_")}')
cov_data = cov_data.reindex(date_range)
covariate_df = covariate_df.merge(cov_data, left_index=True, right_index=True, how='left')
# 3. Gabungkan dan imputasi
final_df = data_full.merge(covariate_df, left_index=True, right_index=True, how='left')
cov_cols = [col for col in final_df.columns if col.startswith('cov_') or col == 'Volume']
# Imputasi Covariates: Forward fill untuk harga/indeks, 0 untuk Volume
final_df['Volume'] = final_df['Volume'].fillna(0)
final_df[[col for col in cov_cols if col != 'Volume']] = final_df[[col for col in cov_cols if col != 'Volume']].fillna(method='ffill')
final_df = final_df.dropna(subset=['Close'], how='all')
# Ganti nama kolom sesuai format Chronos
return final_df.rename(columns={'Close': 'target', 'Volume': 'cov_volume'})
def calculate_advanced_risk_metrics(df: pd.DataFrame, risk_free_rate: float = 0.05) -> Dict[str, Union[float, str]]:
"""Menghitung metrik risiko dan performa lanjutan (Sharpe Ratio, VaR, CVaR, Max Drawdown)."""
if df.empty or 'Close' not in df.columns:
return {"error": "Data historis tidak valid untuk perhitungan risiko."}
try:
df['Returns'] = df['Close'].pct_change()
returns = df['Returns'].dropna()
if returns.empty:
return {"error": "Return historis tidak tersedia."}
days_per_year = 252
annual_return = returns.mean() * days_per_year
annual_vol = returns.std() * np.sqrt(days_per_year)
sharpe_ratio = (annual_return - risk_free_rate) / annual_vol if annual_vol != 0 else 0
var_95 = np.percentile(returns, 5) * -1
cvar_95 = returns[returns < -var_95].mean() * -1
cumulative_returns = (1 + returns).cumprod()
peak = cumulative_returns.expanding(min_periods=1).max()
drawdown = (cumulative_returns / peak) - 1
max_drawdown = drawdown.min()
skewness = skew(returns)
kurtosis_val = kurtosis(returns)
return {
"Annual_Return": f"{annual_return*100:.2f}%",
"Annual_Volatility": f"{annual_vol*100:.2f}%",
"Sharpe_Ratio": f"{sharpe_ratio:.2f}",
"Max_Drawdown": f"{max_drawdown*100:.2f}%",
"VaR_95_Daily_Loss": f"{var_95*100:.2f}%",
"CVaR_95_Avg_Loss": f"{cvar_95*100:.2f}%",
"Skewness": f"{skewness:.2f}",
"Kurtosis": f"{kurtosis_val:.2f}",
}
except Exception as e:
return {"error": f"Risk calculation failed: {str(e)}"}
def predict_technical_indicators_future(data: pd.DataFrame, price_prediction: np.ndarray) -> Dict[str, np.ndarray]:
"""Memprediksi MACD dan Bollinger Bands di masa depan berdasarkan prediksi harga."""
predictions = {}
# Pastikan price_prediction tidak kosong sebelum diolah
if price_prediction.size == 0:
return {"MACD_Future": np.array([]), "MACD_Signal_Future": np.array([]), "BB_Upper_Future": np.array([]), "BB_Lower_Future": np.array([])}
full_price_series = np.concatenate([data['Close'].values, price_prediction])
full_price_series = pd.Series(full_price_series)
# MACD dan Signal Line Future
def calculate_ema(prices, span):
return prices.ewm(span=span, adjust=False).mean()
ema_12_full = calculate_ema(full_price_series, 12)
ema_26_full = calculate_ema(full_price_series, 26)
macd_full = ema_12_full - ema_26_full
macd_signal_full = calculate_ema(macd_full, 9)
predictions['MACD_Future'] = macd_full.iloc[-len(price_prediction):].values
predictions['MACD_Signal_Future'] = macd_signal_full.iloc[-len(price_prediction):].values
# Bollinger Bands Future
period = 20
std_dev = 2
middle_band_full = full_price_series.rolling(window=period).mean()
std_full = full_price_series.rolling(window=period).std()
upper_band_full = middle_band_full + (std_full * std_dev)
lower_band_full = middle_band_full - (std_full * std_dev)
predictions['BB_Upper_Future'] = upper_band_full.iloc[-len(price_prediction):].values
predictions['BB_Lower_Future'] = lower_band_full.iloc[-len(price_prediction):].values
return predictions
@spaces.GPU(duration=120)
def predict_prices(data, prediction_days=30):
"""Fungsi prediksi utama menggunakan Chronos-2 dengan enhanced covariates."""
# Default return structure for errors (Menggunakan np.array([]) yang aman)
empty_result = {
'values': np.array([]), 'dates': pd.Series([], dtype='datetime64[ns]'),
'high_30d': 0, 'low_30d': 0, 'mean_30d': 0, 'change_pct': 0,
'q01': np.array([]), 'q09': np.array([]),
'future_macd': np.array([]), 'future_macd_signal': np.array([]),
'future_bb_upper': np.array([]), 'future_bb_lower': np.array([]),
'summary': 'Prediction failed due to model or data error.'
}
try:
# 1. Load Model (Akan memanggil load_pipeline yang sudah diperbaiki)
pipeline = load_pipeline()
data_original = data.copy()
# 2. Enhanced Data Preprocessing & Covariate
data_enhanced = fetch_enhanced_covariates(data_original)
context_df = data_enhanced.reset_index()
context_df.columns = ['timestamp'] + [col for col in context_df.columns[1:]]
context_df['id'] = 'stock_price'
all_covariates = [col for col in context_df.columns if col not in ['timestamp', 'id', 'target']]
# 3. Model Prediction
with torch.no_grad():
pred_df = pipeline.predict_df(
context_df,
prediction_length=prediction_days,
id_column="id",
timestamp_column="timestamp",
target="target",
covariates=all_covariates,
quantile_levels=[0.1, 0.5, 0.9]
)
required_cols = ['target_0.1', 'target_0.5', 'target_0.9']
if pred_df.empty or not all(col in pred_df.columns for col in required_cols):
missing = [col for col in required_cols if col not in pred_df.columns]
raise RuntimeError(f"Prediction output incomplete. Missing: {missing}")
q05_forecast = pred_df['target_0.5'].values.astype(np.float32)
q09_forecast = pred_df['target_0.9'].values.astype(np.float32)
q01_forecast = pred_df['target_0.1'].values.astype(np.float32)
predicted_dates = pred_df['timestamp']
last_price = data_original['Close'].iloc[-1]
# Proyeksi Indikator Teknikal Masa Depan
future_indicators = predict_technical_indicators_future(data_original, q05_forecast)
predicted_high = float(np.max(q05_forecast))
predicted_low = float(np.min(q05_forecast))
predicted_mean = float(np.mean(q05_forecast))
change_pct = ((predicted_mean - last_price) / last_price) * 100 if last_price != 0 else 0
# Menambahkan data teknikal prediksi ke hasil
return {
'values': q05_forecast,
'dates': predicted_dates,
'high_30d': predicted_high,
'low_30d': predicted_low,
'mean_30d': predicted_mean,
'change_pct': change_pct,
'q01': q01_forecast,
'q09': q09_forecast,
'future_macd': future_indicators.get('MACD_Future', np.array([])),
'future_macd_signal': future_indicators.get('MACD_Signal_Future', np.array([])),
'future_bb_upper': future_indicators.get('BB_Upper_Future', np.array([])),
'future_bb_lower': future_indicators.get('BB_Lower_Future', np.array([])),
'summary': f"AI Model: Amazon Chronos-2 (Enhanced Covariates: {len(all_covariates)} features)\nExpected High: {predicted_high:.2f}\nExpected Low: {predicted_low:.2f}\nExpected Change: {change_pct:.2f}%"
}
except Exception as e:
error_message = f'Model prediction failed: {e}'
print(f"Error in prediction: {e}")
empty_result['summary'] = error_message
return empty_result
# Memperbarui fungsi create_prediction_chart untuk menampilkan Quantile Bands (q01, q09) dan Future BB
def create_prediction_chart(data, predictions):
# Cek yang lebih aman untuk array kosong
if not predictions['values'].size or not predictions['q01'].size:
return go.Figure().update_layout(title="Prediction Failed: No Data Available")
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.05,
row_heights=[0.7, 0.3], subplot_titles=('Price Forecast & Confidence Band', 'MACD Forecast'))
# 1. Price Forecast (Row 1)
fig.add_trace(go.Scatter(x=data.index, y=data['Close'].values, name='Historical Price', line=dict(color='blue', width=2)), row=1, col=1)
# Upper/Lower Quantile Band (Confidence)
fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['q09'], name='90% Upper Bound (Q0.9)', line=dict(color='lightcoral', width=0)), row=1, col=1)
fig.add_trace(go.Scatter(
x=predictions['dates'], y=predictions['q01'], name='90% Confidence Band',
line=dict(color='lightcoral', width=0), fill='tonexty', fillcolor='rgba(255,182,193,0.3)'
), row=1, col=1)
fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['values'], name='Median Forecast (Q0.5)', line=dict(color='red', width=3, dash='solid')), row=1, col=1)
# Future Bollinger Bands
if predictions['future_bb_upper'].size == predictions['dates'].size:
fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['future_bb_upper'], name='BB Upper (Future)', line=dict(color='green', width=1, dash='dot')), row=1, col=1)
fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['future_bb_lower'], name='BB Lower (Future)', line=dict(color='green', width=1, dash='dot')), row=1, col=1)
last_hist_date = data.index[-1]
last_hist_price = data['Close'].iloc[-1]
fig.add_trace(go.Scatter(x=[last_hist_date], y=[last_hist_price], mode='markers', marker=dict(size=10, color='blue', symbol='circle'), name='Last Known Price'), row=1, col=1)
# 2. MACD Forecast (Row 2)
if predictions['future_macd'].size == predictions['dates'].size:
# Perluas data historis MACD untuk charting yang lebih baik
lookback_period = 60
macd_hist = data['Close'].ewm(span=12).mean() - data['Close'].ewm(span=26).mean()
macd_signal_hist = macd_hist.ewm(span=9).mean()
macd_full = np.concatenate([macd_hist.iloc[-lookback_period:].values, predictions['future_macd']])
macd_signal_full = np.concatenate([macd_signal_hist.iloc[-lookback_period:].values, predictions['future_macd_signal']])
macd_dates_full = pd.to_datetime(np.concatenate([data.index[-lookback_period:].values, predictions['dates']]))
fig.add_trace(go.Scatter(x=macd_dates_full, y=macd_full, name='MACD Line', line=dict(color='blue', width=2)), row=2, col=1)
fig.add_trace(go.Scatter(x=macd_dates_full, y=macd_signal_full, name='Signal Line', line=dict(color='red', width=1)), row=2, col=1)
fig.add_vline(x=data.index[-1], line_width=1, line_dash="dash", line_color="gray", row=2, col=1)
fig.add_vline(x=data.index[-1], line_width=1, line_dash="dash", line_color="gray", row=1, col=1)
fig.update_layout(
title=f'Advanced Price & Technical Forecast - Next {len(predictions["dates"])} Days (Chronos-2)',
xaxis_title='Date', yaxis_title='Price (IDR)', hovermode='x unified', height=900,
legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01)
)
fig.update_yaxes(title_text="Price (IDR)", row=1, col=1)
fig.update_yaxes(title_text="MACD Value", row=2, col=1)
return fig
# ... (Fungsi-fungsi lama lainnya seperti get_indonesian_stocks, calculate_technical_indicators, dll. tetap sama)
def get_indonesian_stocks():
return {
"BBCA.JK": "Bank Central Asia", "BBRI.JK": "Bank BRI", "BBNI.JK": "Bank BNI",
"BMRI.JK": "Bank Mandiri", "TLKM.JK": "Telkom Indonesia", "UNVR.JK": "Unilever Indonesia",
"ASII.JK": "Astra International", "INDF.JK": "Indofood Sukses Makmur", "KLBF.JK": "Kalbe Farma",
"HMSP.JK": "HM Sampoerna", "GGRM.JK": "Gudang Garam", "ADRO.JK": "Adaro Energy",
"PGAS.JK": "Perusahaan Gas Negara", "JSMR.JK": "Jasa Marga", "WIKA.JK": "Wijaya Karya",
"PTBA.JK": "Tambang Batubara Bukit Asam", "ANTM.JK": "Aneka Tambang", "SMGR.JK": "Semen Indonesia",
"INTP.JK": "Indocement Tunggal Prakasa", "ITMG.JK": "Indo Tambangraya Megah"
}
def calculate_technical_indicators(data):
indicators = {}
def calculate_rsi(prices, period=14):
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
rsi_series = calculate_rsi(data['Close'])
indicators['rsi'] = {'current': rsi_series.iloc[-1], 'values': rsi_series}
def calculate_macd(prices, fast=12, slow=26, signal=9):
exp1 = prices.ewm(span=fast).mean()
exp2 = prices.ewm(span=slow).mean()
macd = exp1 - exp2
signal_line = macd.ewm(span=signal).mean()
histogram = macd - signal_line
return macd, signal_line, histogram
macd, signal_line, histogram = calculate_macd(data['Close'])
indicators['macd'] = {'macd': macd.iloc[-1], 'signal': signal_line.iloc[-1], 'histogram': histogram.iloc[-1], 'signal_text': 'BUY' if histogram.iloc[-1] > 0 else 'SELL', 'macd_values': macd, 'signal_values': signal_line}
def calculate_bollinger_bands(prices, period=20, std_dev=2):
sma = prices.rolling(window=period).mean()
std = prices.rolling(window=period).std()
upper_band = sma + (std * std_dev)
lower_band = sma - (std * std_dev)
return upper_band, sma, lower_band
upper, middle, lower = calculate_bollinger_bands(data['Close'])
current_price = data['Close'].iloc[-1]
bb_position = (current_price - lower.iloc[-1]) / (upper.iloc[-1] - lower.iloc[-1])
indicators['bollinger'] = {
'upper': upper.iloc[-1], 'middle': middle.iloc[-1], 'lower': lower.iloc[-1],
'upper_values': upper, 'middle_values': middle, 'lower_values': lower,
'position': 'UPPER' if bb_position > 0.8 else 'LOWER' if bb_position < 0.2 else 'MIDDLE'
}
sma_20_series = data['Close'].rolling(20).mean()
sma_50_series = data['Close'].rolling(50).mean()
indicators['moving_averages'] = {'sma_20': sma_20_series.iloc[-1], 'sma_50': sma_50_series.iloc[-1], 'sma_200': data['Close'].rolling(200).mean().iloc[-1], 'ema_12': data['Close'].ewm(span=12).mean().iloc[-1], 'ema_26': data['Close'].ewm(span=26).mean().iloc[-1], 'sma_20_values': sma_20_series, 'sma_50_values': sma_50_series}
indicators['volume'] = {'current': data['Volume'].iloc[-1], 'avg_20': data['Volume'].rolling(20).mean().iloc[-1], 'ratio': data['Volume'].iloc[-1] / data['Volume'].rolling(20).mean().iloc[-1]}
# Tambahkan kolom indikator ke DataFrame input untuk digunakan nanti (di predict_technical_indicators_future)
data['RSI'] = rsi_series
data['MACD'] = macd
data['MACD_Signal'] = signal_line
return indicators
def generate_trading_signals(data, indicators):
signals = {}
current_price = data['Close'].iloc[-1]
buy_signals = 0
sell_signals = 0
signal_details = []
rsi = indicators['rsi']['current']
if rsi < 30:
buy_signals += 1
signal_details.append(f"βœ… RSI ({rsi:.1f}) - Oversold - BUY signal")
elif rsi > 70:
sell_signals += 1
signal_details.append(f"❌ RSI ({rsi:.1f}) - Overbought - SELL signal")
else:
signal_details.append(f"βšͺ RSI ({rsi:.1f}) - Neutral")
macd_hist = indicators['macd']['histogram']
if macd_hist > 0:
buy_signals += 1
signal_details.append(f"βœ… MACD Histogram ({macd_hist:.4f}) - Positive - BUY signal")
else:
sell_signals += 1
signal_details.append(f"❌ MACD Histogram ({macd_hist:.4f}) - Negative - SELL signal")
bb_position = indicators['bollinger']['position']
if bb_position == 'LOWER':
buy_signals += 1
signal_details.append(f"βœ… Bollinger Bands - Near lower band - BUY signal")
elif bb_position == 'UPPER':
sell_signals += 1
signal_details.append(f"❌ Bollinger Bands - Near upper band - SELL signal")
else:
signal_details.append("βšͺ Bollinger Bands - Middle position")
sma_20 = indicators['moving_averages']['sma_20']
sma_50 = indicators['moving_averages']['sma_50']
if current_price > sma_20 > sma_50:
buy_signals += 1
signal_details.append(f"βœ… Price above MA(20,50) - Bullish - BUY signal")
elif current_price < sma_20 < sma_50:
sell_signals += 1
signal_details.append(f"❌ Price below MA(20,50) - Bearish - SELL signal")
else:
signal_details.append("βšͺ Moving Averages - Mixed signals")
volume_ratio = indicators['volume']['ratio']
if volume_ratio > 1.5:
buy_signals += 0.5
signal_details.append(f"βœ… High volume ({volume_ratio:.1f}x avg) - Strengthens BUY signal")
elif volume_ratio < 0.5:
sell_signals += 0.5
signal_details.append(f"❌ Low volume ({volume_ratio:.1f}x avg) - Weakens SELL signal")
else:
signal_details.append(f"βšͺ Normal volume ({volume_ratio:.1f}x avg)")
total_signals = buy_signals + sell_signals
signal_strength = (buy_signals / max(total_signals, 1)) * 100
overall_signal = "BUY" if buy_signals > sell_signals else "SELL" if sell_signals > buy_signals else "HOLD"
recent_high = data['High'].tail(20).max()
recent_low = data['Low'].tail(20).min()
signals = {'overall': overall_signal, 'strength': signal_strength, 'details': '\n'.join(signal_details), 'support': recent_low, 'resistance': recent_high, 'stop_loss': recent_low * 0.95 if overall_signal == "BUY" else recent_high * 1.05}
return signals
def get_fundamental_data(stock):
try:
info = stock.info
history = stock.history(period="1d")
fundamental_info = {'name': info.get('longName', 'N/A'), 'current_price': history['Close'].iloc[-1] if not history.empty else 0, 'market_cap': info.get('marketCap', 0), 'pe_ratio': info.get('forwardPE', 0), 'dividend_yield': info.get('dividendYield', 0) * 100 if info.get('dividendYield') else 0, 'volume': history['Volume'].iloc[-1] if not history.empty else 0, 'info': f"Sector: {info.get('sector', 'N/A')}\nIndustry: {info.get('industry', 'N/A')}\nMarket Cap: {info.get('marketCap', 0)}\n52 Week High: {info.get('fiftyTwoWeekHigh', 'N/A')}\n52 Week Low: {info.get('fiftyTwoWeekLow', 'N/A')}\nBeta: {info.get('beta', 'N/A')}\nEPS: {info.get('forwardEps', 'N/A')}\nBook Value: {info.get('bookValue', 'N/A')}\nPrice to Book: {info.get('priceToBook', 'N/A')}"}
return fundamental_info
except:
return {'name': 'N/A', 'current_price': 0, 'market_cap': 0, 'pe_ratio': 0, 'dividend_yield': 0, 'volume': 0, 'info': 'Unable to fetch fundamental data'}
def format_large_number(num):
if num >= 1e12:
return f"{num/1e12:.2f}T"
elif num >= 1e9:
return f"{num/1e9:.2f}B"
elif num >= 1e6:
return f"{num/1e6:.2f}M"
elif num >= 1e3:
return f"{num/1e3:.2f}K"
else:
return f"{num:.2f}"
def create_price_chart(data, indicators):
fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05)
fig.add_trace(go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Price'), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['macd_values'], name='MACD', line=dict(color='blue')), row=3, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['signal_values'], name='Signal', line=dict(color='red')), row=3, col=1)
fig.update_layout(title='Technical Analysis Dashboard', height=900, showlegend=True)
return fig
def create_technical_chart(data, indicators):
fig = make_subplots(rows=2, cols=2, subplot_titles=('Bollinger Bands', 'Volume', 'Price vs MA', 'RSI Analysis'))
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='black')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['upper_values'], name='Upper Band', line=dict(color='red')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['lower_values'], name='Lower Band', line=dict(color='green'), fill='tonexty', fillcolor='rgba(0,255,0,0.1)'), row=1, col=1)
fig.add_trace(go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'), row=1, col=2)
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='gray')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange', dash='dash')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue', dash='dash')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=2)
fig.add_hline(y=70, line_dash="dash", line_color="red", row=2, col=2)
fig.add_hline(y=30, line_dash="dash", line_color="green", row=2, col=2)
fig.update_layout(title='Technical Indicators Overview', height=800, showlegend=False, hovermode='x unified')
return fig