Spaces:
Running
Running
File size: 26,669 Bytes
7458986 8ce0053 f6259db 08f6049 f6259db 7458986 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 9bcc597 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 f6259db 08f6049 7458986 f6259db 7458986 f6259db 7458986 f6259db 7458986 3d7d95e f6259db 7458986 72779a3 f6259db 72779a3 e8bdf75 3d7d95e f6259db 7458986 3d7d95e 7458986 3d7d95e 7458986 7f84e9b 7458986 7f84e9b 3d7d95e 7458986 7f84e9b c930ac9 7f84e9b c930ac9 7f84e9b 7458986 8b0d75b 7f84e9b 8b0d75b 7f84e9b 8dcd0a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import yfinance as yf
import pandas as pd
import numpy as np
import torch
from datetime import datetime, timedelta
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import spaces
import gc
import time
import random
from chronos import ChronosPipeline
from scipy.stats import skew, kurtosis
from typing import Dict, Union, List
# Global variable for model pipeline
pipeline = None
# --- ADVANCED UTILITIES & CONFIG ---
# Sumber data Covariate eksternal
COVARIATE_SOURCES = {
'market_indices': ['^GSPC', '^DJI', '^IXIC', '^VIX'],
'commodities': ['GC=F', 'CL=F'],
}
def clear_gpu_memory():
"""Membersihkan cache memori GPU"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@spaces.GPU()
def load_pipeline():
"""
Memuat model Chronos-2 dengan konfigurasi GPU canggih.
Menggunakan device_map="cuda" dan torch_dtype=torch.float16.
"""
global pipeline
try:
model_name = "amazon/chronos-2"
if pipeline is None:
clear_gpu_memory()
print(f"Loading Chronos model: {model_name}...")
# FIX 1: Menyederhanakan argumen untuk menghindari error 'input_patch_size'
pipeline = ChronosPipeline.from_pretrained(
model_name,
device_map="cuda",
torch_dtype=torch.float16,
# Menghapus argumen yang mungkin memicu error konfigurasi
)
pipeline.model = pipeline.model.eval()
for param in pipeline.model.parameters():
param.requires_grad = False
print(f"Chronos model {model_name} loaded successfully on CUDA")
return pipeline
except Exception as e:
# Menampilkan error yang lebih spesifik
print(f"Error loading pipeline on CUDA, trying CPU: {str(e)}")
try:
# Fallback ke CPU
pipeline = ChronosPipeline.from_pretrained(model_name, device_map="cpu")
pipeline.model = pipeline.model.eval()
print(f"Chronos model {model_name} loaded successfully on CPU (performance degraded)")
return pipeline
except Exception as cpu_e:
raise RuntimeError(f"Failed to load model {model_name} on both CUDA and CPU: {str(cpu_e)}")
# ... (Fungsi-fungsi lain: retry_yfinance_request, fetch_enhanced_covariates, calculate_advanced_risk_metrics)
def retry_yfinance_request(func, max_retries=3, initial_delay=1):
"""Mekanisme retry untuk permintaan yfinance dengan backoff eksponensial."""
for attempt in range(max_retries):
try:
result = func()
if result is not None and not result.empty:
return result
if attempt == max_retries - 1:
return None
delay = min(8.0, initial_delay * (2 ** attempt) + random.uniform(0, 1))
time.sleep(delay)
except Exception:
if attempt == max_retries - 1:
return None
delay = min(8.0, initial_delay * (2 ** attempt) + random.uniform(0, 1))
time.sleep(delay)
def fetch_enhanced_covariates(data: pd.DataFrame) -> pd.DataFrame:
"""Mengambil data covariate (Indeks Pasar) dan menggabungkannya."""
start_date = data.index.min().strftime('%Y-%m-%d')
end_date = data.index.max().strftime('%Y-%m-%d')
date_range = pd.date_range(start=start_date, end=end_date, freq='D')
# 1. Reindex data asli ke range hari yang kontinu
data_full = data.reindex(date_range)
data_full['Close'] = data_full['Close'].fillna(method='ffill')
data_full['Volume'] = data_full['Volume'].fillna(0)
covariate_df = pd.DataFrame(index=date_range)
# 2. Ambil data dari semua sumber covariate eksternal
for source_key, symbols in COVARIATE_SOURCES.items():
for symbol in symbols:
def fetch_covariate():
return yf.download(symbol, start=start_date, end=end_date, interval="1d", progress=False)
cov_data = retry_yfinance_request(fetch_covariate)
if cov_data is not None and not cov_data.empty:
cov_data = cov_data['Close'].rename(f'cov_{symbol.replace("^", "_").replace("=", "_")}')
cov_data = cov_data.reindex(date_range)
covariate_df = covariate_df.merge(cov_data, left_index=True, right_index=True, how='left')
# 3. Gabungkan dan imputasi
final_df = data_full.merge(covariate_df, left_index=True, right_index=True, how='left')
cov_cols = [col for col in final_df.columns if col.startswith('cov_') or col == 'Volume']
# Imputasi Covariates: Forward fill untuk harga/indeks, 0 untuk Volume
final_df['Volume'] = final_df['Volume'].fillna(0)
final_df[[col for col in cov_cols if col != 'Volume']] = final_df[[col for col in cov_cols if col != 'Volume']].fillna(method='ffill')
final_df = final_df.dropna(subset=['Close'], how='all')
# Ganti nama kolom sesuai format Chronos
return final_df.rename(columns={'Close': 'target', 'Volume': 'cov_volume'})
def calculate_advanced_risk_metrics(df: pd.DataFrame, risk_free_rate: float = 0.05) -> Dict[str, Union[float, str]]:
"""Menghitung metrik risiko dan performa lanjutan (Sharpe Ratio, VaR, CVaR, Max Drawdown)."""
if df.empty or 'Close' not in df.columns:
return {"error": "Data historis tidak valid untuk perhitungan risiko."}
try:
df['Returns'] = df['Close'].pct_change()
returns = df['Returns'].dropna()
if returns.empty:
return {"error": "Return historis tidak tersedia."}
days_per_year = 252
annual_return = returns.mean() * days_per_year
annual_vol = returns.std() * np.sqrt(days_per_year)
sharpe_ratio = (annual_return - risk_free_rate) / annual_vol if annual_vol != 0 else 0
var_95 = np.percentile(returns, 5) * -1
cvar_95 = returns[returns < -var_95].mean() * -1
cumulative_returns = (1 + returns).cumprod()
peak = cumulative_returns.expanding(min_periods=1).max()
drawdown = (cumulative_returns / peak) - 1
max_drawdown = drawdown.min()
skewness = skew(returns)
kurtosis_val = kurtosis(returns)
return {
"Annual_Return": f"{annual_return*100:.2f}%",
"Annual_Volatility": f"{annual_vol*100:.2f}%",
"Sharpe_Ratio": f"{sharpe_ratio:.2f}",
"Max_Drawdown": f"{max_drawdown*100:.2f}%",
"VaR_95_Daily_Loss": f"{var_95*100:.2f}%",
"CVaR_95_Avg_Loss": f"{cvar_95*100:.2f}%",
"Skewness": f"{skewness:.2f}",
"Kurtosis": f"{kurtosis_val:.2f}",
}
except Exception as e:
return {"error": f"Risk calculation failed: {str(e)}"}
def predict_technical_indicators_future(data: pd.DataFrame, price_prediction: np.ndarray) -> Dict[str, np.ndarray]:
"""Memprediksi MACD dan Bollinger Bands di masa depan berdasarkan prediksi harga."""
predictions = {}
# Pastikan price_prediction tidak kosong sebelum diolah
if price_prediction.size == 0:
return {"MACD_Future": np.array([]), "MACD_Signal_Future": np.array([]), "BB_Upper_Future": np.array([]), "BB_Lower_Future": np.array([])}
full_price_series = np.concatenate([data['Close'].values, price_prediction])
full_price_series = pd.Series(full_price_series)
# MACD dan Signal Line Future
def calculate_ema(prices, span):
return prices.ewm(span=span, adjust=False).mean()
ema_12_full = calculate_ema(full_price_series, 12)
ema_26_full = calculate_ema(full_price_series, 26)
macd_full = ema_12_full - ema_26_full
macd_signal_full = calculate_ema(macd_full, 9)
predictions['MACD_Future'] = macd_full.iloc[-len(price_prediction):].values
predictions['MACD_Signal_Future'] = macd_signal_full.iloc[-len(price_prediction):].values
# Bollinger Bands Future
period = 20
std_dev = 2
middle_band_full = full_price_series.rolling(window=period).mean()
std_full = full_price_series.rolling(window=period).std()
upper_band_full = middle_band_full + (std_full * std_dev)
lower_band_full = middle_band_full - (std_full * std_dev)
predictions['BB_Upper_Future'] = upper_band_full.iloc[-len(price_prediction):].values
predictions['BB_Lower_Future'] = lower_band_full.iloc[-len(price_prediction):].values
return predictions
@spaces.GPU(duration=120)
def predict_prices(data, prediction_days=30):
"""Fungsi prediksi utama menggunakan Chronos-2 dengan enhanced covariates."""
# Default return structure for errors (Menggunakan np.array([]) yang aman)
empty_result = {
'values': np.array([]), 'dates': pd.Series([], dtype='datetime64[ns]'),
'high_30d': 0, 'low_30d': 0, 'mean_30d': 0, 'change_pct': 0,
'q01': np.array([]), 'q09': np.array([]),
'future_macd': np.array([]), 'future_macd_signal': np.array([]),
'future_bb_upper': np.array([]), 'future_bb_lower': np.array([]),
'summary': 'Prediction failed due to model or data error.'
}
try:
# 1. Load Model (Akan memanggil load_pipeline yang sudah diperbaiki)
pipeline = load_pipeline()
data_original = data.copy()
# 2. Enhanced Data Preprocessing & Covariate
data_enhanced = fetch_enhanced_covariates(data_original)
context_df = data_enhanced.reset_index()
context_df.columns = ['timestamp'] + [col for col in context_df.columns[1:]]
context_df['id'] = 'stock_price'
all_covariates = [col for col in context_df.columns if col not in ['timestamp', 'id', 'target']]
# 3. Model Prediction
with torch.no_grad():
pred_df = pipeline.predict_df(
context_df,
prediction_length=prediction_days,
id_column="id",
timestamp_column="timestamp",
target="target",
covariates=all_covariates,
quantile_levels=[0.1, 0.5, 0.9]
)
required_cols = ['target_0.1', 'target_0.5', 'target_0.9']
if pred_df.empty or not all(col in pred_df.columns for col in required_cols):
missing = [col for col in required_cols if col not in pred_df.columns]
raise RuntimeError(f"Prediction output incomplete. Missing: {missing}")
q05_forecast = pred_df['target_0.5'].values.astype(np.float32)
q09_forecast = pred_df['target_0.9'].values.astype(np.float32)
q01_forecast = pred_df['target_0.1'].values.astype(np.float32)
predicted_dates = pred_df['timestamp']
last_price = data_original['Close'].iloc[-1]
# Proyeksi Indikator Teknikal Masa Depan
future_indicators = predict_technical_indicators_future(data_original, q05_forecast)
predicted_high = float(np.max(q05_forecast))
predicted_low = float(np.min(q05_forecast))
predicted_mean = float(np.mean(q05_forecast))
change_pct = ((predicted_mean - last_price) / last_price) * 100 if last_price != 0 else 0
# Menambahkan data teknikal prediksi ke hasil
return {
'values': q05_forecast,
'dates': predicted_dates,
'high_30d': predicted_high,
'low_30d': predicted_low,
'mean_30d': predicted_mean,
'change_pct': change_pct,
'q01': q01_forecast,
'q09': q09_forecast,
'future_macd': future_indicators.get('MACD_Future', np.array([])),
'future_macd_signal': future_indicators.get('MACD_Signal_Future', np.array([])),
'future_bb_upper': future_indicators.get('BB_Upper_Future', np.array([])),
'future_bb_lower': future_indicators.get('BB_Lower_Future', np.array([])),
'summary': f"AI Model: Amazon Chronos-2 (Enhanced Covariates: {len(all_covariates)} features)\nExpected High: {predicted_high:.2f}\nExpected Low: {predicted_low:.2f}\nExpected Change: {change_pct:.2f}%"
}
except Exception as e:
error_message = f'Model prediction failed: {e}'
print(f"Error in prediction: {e}")
empty_result['summary'] = error_message
return empty_result
# Memperbarui fungsi create_prediction_chart untuk menampilkan Quantile Bands (q01, q09) dan Future BB
def create_prediction_chart(data, predictions):
# Cek yang lebih aman untuk array kosong
if not predictions['values'].size or not predictions['q01'].size:
return go.Figure().update_layout(title="Prediction Failed: No Data Available")
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.05,
row_heights=[0.7, 0.3], subplot_titles=('Price Forecast & Confidence Band', 'MACD Forecast'))
# 1. Price Forecast (Row 1)
fig.add_trace(go.Scatter(x=data.index, y=data['Close'].values, name='Historical Price', line=dict(color='blue', width=2)), row=1, col=1)
# Upper/Lower Quantile Band (Confidence)
fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['q09'], name='90% Upper Bound (Q0.9)', line=dict(color='lightcoral', width=0)), row=1, col=1)
fig.add_trace(go.Scatter(
x=predictions['dates'], y=predictions['q01'], name='90% Confidence Band',
line=dict(color='lightcoral', width=0), fill='tonexty', fillcolor='rgba(255,182,193,0.3)'
), row=1, col=1)
fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['values'], name='Median Forecast (Q0.5)', line=dict(color='red', width=3, dash='solid')), row=1, col=1)
# Future Bollinger Bands
if predictions['future_bb_upper'].size == predictions['dates'].size:
fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['future_bb_upper'], name='BB Upper (Future)', line=dict(color='green', width=1, dash='dot')), row=1, col=1)
fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['future_bb_lower'], name='BB Lower (Future)', line=dict(color='green', width=1, dash='dot')), row=1, col=1)
last_hist_date = data.index[-1]
last_hist_price = data['Close'].iloc[-1]
fig.add_trace(go.Scatter(x=[last_hist_date], y=[last_hist_price], mode='markers', marker=dict(size=10, color='blue', symbol='circle'), name='Last Known Price'), row=1, col=1)
# 2. MACD Forecast (Row 2)
if predictions['future_macd'].size == predictions['dates'].size:
# Perluas data historis MACD untuk charting yang lebih baik
lookback_period = 60
macd_hist = data['Close'].ewm(span=12).mean() - data['Close'].ewm(span=26).mean()
macd_signal_hist = macd_hist.ewm(span=9).mean()
macd_full = np.concatenate([macd_hist.iloc[-lookback_period:].values, predictions['future_macd']])
macd_signal_full = np.concatenate([macd_signal_hist.iloc[-lookback_period:].values, predictions['future_macd_signal']])
macd_dates_full = pd.to_datetime(np.concatenate([data.index[-lookback_period:].values, predictions['dates']]))
fig.add_trace(go.Scatter(x=macd_dates_full, y=macd_full, name='MACD Line', line=dict(color='blue', width=2)), row=2, col=1)
fig.add_trace(go.Scatter(x=macd_dates_full, y=macd_signal_full, name='Signal Line', line=dict(color='red', width=1)), row=2, col=1)
fig.add_vline(x=data.index[-1], line_width=1, line_dash="dash", line_color="gray", row=2, col=1)
fig.add_vline(x=data.index[-1], line_width=1, line_dash="dash", line_color="gray", row=1, col=1)
fig.update_layout(
title=f'Advanced Price & Technical Forecast - Next {len(predictions["dates"])} Days (Chronos-2)',
xaxis_title='Date', yaxis_title='Price (IDR)', hovermode='x unified', height=900,
legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01)
)
fig.update_yaxes(title_text="Price (IDR)", row=1, col=1)
fig.update_yaxes(title_text="MACD Value", row=2, col=1)
return fig
# ... (Fungsi-fungsi lama lainnya seperti get_indonesian_stocks, calculate_technical_indicators, dll. tetap sama)
def get_indonesian_stocks():
return {
"BBCA.JK": "Bank Central Asia", "BBRI.JK": "Bank BRI", "BBNI.JK": "Bank BNI",
"BMRI.JK": "Bank Mandiri", "TLKM.JK": "Telkom Indonesia", "UNVR.JK": "Unilever Indonesia",
"ASII.JK": "Astra International", "INDF.JK": "Indofood Sukses Makmur", "KLBF.JK": "Kalbe Farma",
"HMSP.JK": "HM Sampoerna", "GGRM.JK": "Gudang Garam", "ADRO.JK": "Adaro Energy",
"PGAS.JK": "Perusahaan Gas Negara", "JSMR.JK": "Jasa Marga", "WIKA.JK": "Wijaya Karya",
"PTBA.JK": "Tambang Batubara Bukit Asam", "ANTM.JK": "Aneka Tambang", "SMGR.JK": "Semen Indonesia",
"INTP.JK": "Indocement Tunggal Prakasa", "ITMG.JK": "Indo Tambangraya Megah"
}
def calculate_technical_indicators(data):
indicators = {}
def calculate_rsi(prices, period=14):
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
rsi_series = calculate_rsi(data['Close'])
indicators['rsi'] = {'current': rsi_series.iloc[-1], 'values': rsi_series}
def calculate_macd(prices, fast=12, slow=26, signal=9):
exp1 = prices.ewm(span=fast).mean()
exp2 = prices.ewm(span=slow).mean()
macd = exp1 - exp2
signal_line = macd.ewm(span=signal).mean()
histogram = macd - signal_line
return macd, signal_line, histogram
macd, signal_line, histogram = calculate_macd(data['Close'])
indicators['macd'] = {'macd': macd.iloc[-1], 'signal': signal_line.iloc[-1], 'histogram': histogram.iloc[-1], 'signal_text': 'BUY' if histogram.iloc[-1] > 0 else 'SELL', 'macd_values': macd, 'signal_values': signal_line}
def calculate_bollinger_bands(prices, period=20, std_dev=2):
sma = prices.rolling(window=period).mean()
std = prices.rolling(window=period).std()
upper_band = sma + (std * std_dev)
lower_band = sma - (std * std_dev)
return upper_band, sma, lower_band
upper, middle, lower = calculate_bollinger_bands(data['Close'])
current_price = data['Close'].iloc[-1]
bb_position = (current_price - lower.iloc[-1]) / (upper.iloc[-1] - lower.iloc[-1])
indicators['bollinger'] = {
'upper': upper.iloc[-1], 'middle': middle.iloc[-1], 'lower': lower.iloc[-1],
'upper_values': upper, 'middle_values': middle, 'lower_values': lower,
'position': 'UPPER' if bb_position > 0.8 else 'LOWER' if bb_position < 0.2 else 'MIDDLE'
}
sma_20_series = data['Close'].rolling(20).mean()
sma_50_series = data['Close'].rolling(50).mean()
indicators['moving_averages'] = {'sma_20': sma_20_series.iloc[-1], 'sma_50': sma_50_series.iloc[-1], 'sma_200': data['Close'].rolling(200).mean().iloc[-1], 'ema_12': data['Close'].ewm(span=12).mean().iloc[-1], 'ema_26': data['Close'].ewm(span=26).mean().iloc[-1], 'sma_20_values': sma_20_series, 'sma_50_values': sma_50_series}
indicators['volume'] = {'current': data['Volume'].iloc[-1], 'avg_20': data['Volume'].rolling(20).mean().iloc[-1], 'ratio': data['Volume'].iloc[-1] / data['Volume'].rolling(20).mean().iloc[-1]}
# Tambahkan kolom indikator ke DataFrame input untuk digunakan nanti (di predict_technical_indicators_future)
data['RSI'] = rsi_series
data['MACD'] = macd
data['MACD_Signal'] = signal_line
return indicators
def generate_trading_signals(data, indicators):
signals = {}
current_price = data['Close'].iloc[-1]
buy_signals = 0
sell_signals = 0
signal_details = []
rsi = indicators['rsi']['current']
if rsi < 30:
buy_signals += 1
signal_details.append(f"β
RSI ({rsi:.1f}) - Oversold - BUY signal")
elif rsi > 70:
sell_signals += 1
signal_details.append(f"β RSI ({rsi:.1f}) - Overbought - SELL signal")
else:
signal_details.append(f"βͺ RSI ({rsi:.1f}) - Neutral")
macd_hist = indicators['macd']['histogram']
if macd_hist > 0:
buy_signals += 1
signal_details.append(f"β
MACD Histogram ({macd_hist:.4f}) - Positive - BUY signal")
else:
sell_signals += 1
signal_details.append(f"β MACD Histogram ({macd_hist:.4f}) - Negative - SELL signal")
bb_position = indicators['bollinger']['position']
if bb_position == 'LOWER':
buy_signals += 1
signal_details.append(f"β
Bollinger Bands - Near lower band - BUY signal")
elif bb_position == 'UPPER':
sell_signals += 1
signal_details.append(f"β Bollinger Bands - Near upper band - SELL signal")
else:
signal_details.append("βͺ Bollinger Bands - Middle position")
sma_20 = indicators['moving_averages']['sma_20']
sma_50 = indicators['moving_averages']['sma_50']
if current_price > sma_20 > sma_50:
buy_signals += 1
signal_details.append(f"β
Price above MA(20,50) - Bullish - BUY signal")
elif current_price < sma_20 < sma_50:
sell_signals += 1
signal_details.append(f"β Price below MA(20,50) - Bearish - SELL signal")
else:
signal_details.append("βͺ Moving Averages - Mixed signals")
volume_ratio = indicators['volume']['ratio']
if volume_ratio > 1.5:
buy_signals += 0.5
signal_details.append(f"β
High volume ({volume_ratio:.1f}x avg) - Strengthens BUY signal")
elif volume_ratio < 0.5:
sell_signals += 0.5
signal_details.append(f"β Low volume ({volume_ratio:.1f}x avg) - Weakens SELL signal")
else:
signal_details.append(f"βͺ Normal volume ({volume_ratio:.1f}x avg)")
total_signals = buy_signals + sell_signals
signal_strength = (buy_signals / max(total_signals, 1)) * 100
overall_signal = "BUY" if buy_signals > sell_signals else "SELL" if sell_signals > buy_signals else "HOLD"
recent_high = data['High'].tail(20).max()
recent_low = data['Low'].tail(20).min()
signals = {'overall': overall_signal, 'strength': signal_strength, 'details': '\n'.join(signal_details), 'support': recent_low, 'resistance': recent_high, 'stop_loss': recent_low * 0.95 if overall_signal == "BUY" else recent_high * 1.05}
return signals
def get_fundamental_data(stock):
try:
info = stock.info
history = stock.history(period="1d")
fundamental_info = {'name': info.get('longName', 'N/A'), 'current_price': history['Close'].iloc[-1] if not history.empty else 0, 'market_cap': info.get('marketCap', 0), 'pe_ratio': info.get('forwardPE', 0), 'dividend_yield': info.get('dividendYield', 0) * 100 if info.get('dividendYield') else 0, 'volume': history['Volume'].iloc[-1] if not history.empty else 0, 'info': f"Sector: {info.get('sector', 'N/A')}\nIndustry: {info.get('industry', 'N/A')}\nMarket Cap: {info.get('marketCap', 0)}\n52 Week High: {info.get('fiftyTwoWeekHigh', 'N/A')}\n52 Week Low: {info.get('fiftyTwoWeekLow', 'N/A')}\nBeta: {info.get('beta', 'N/A')}\nEPS: {info.get('forwardEps', 'N/A')}\nBook Value: {info.get('bookValue', 'N/A')}\nPrice to Book: {info.get('priceToBook', 'N/A')}"}
return fundamental_info
except:
return {'name': 'N/A', 'current_price': 0, 'market_cap': 0, 'pe_ratio': 0, 'dividend_yield': 0, 'volume': 0, 'info': 'Unable to fetch fundamental data'}
def format_large_number(num):
if num >= 1e12:
return f"{num/1e12:.2f}T"
elif num >= 1e9:
return f"{num/1e9:.2f}B"
elif num >= 1e6:
return f"{num/1e6:.2f}M"
elif num >= 1e3:
return f"{num/1e3:.2f}K"
else:
return f"{num:.2f}"
def create_price_chart(data, indicators):
fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05)
fig.add_trace(go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Price'), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['macd_values'], name='MACD', line=dict(color='blue')), row=3, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['signal_values'], name='Signal', line=dict(color='red')), row=3, col=1)
fig.update_layout(title='Technical Analysis Dashboard', height=900, showlegend=True)
return fig
def create_technical_chart(data, indicators):
fig = make_subplots(rows=2, cols=2, subplot_titles=('Bollinger Bands', 'Volume', 'Price vs MA', 'RSI Analysis'))
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='black')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['upper_values'], name='Upper Band', line=dict(color='red')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['lower_values'], name='Lower Band', line=dict(color='green'), fill='tonexty', fillcolor='rgba(0,255,0,0.1)'), row=1, col=1)
fig.add_trace(go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'), row=1, col=2)
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='gray')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange', dash='dash')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue', dash='dash')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=2)
fig.add_hline(y=70, line_dash="dash", line_color="red", row=2, col=2)
fig.add_hline(y=30, line_dash="dash", line_color="green", row=2, col=2)
fig.update_layout(title='Technical Indicators Overview', height=800, showlegend=False, hovermode='x unified')
return fig |